Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 7062, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400800

ABSTRACT

Detection of cytosolic DNA is a central element of the innate immunity system against viral infection. The Ku heterodimer, a component of the NHEJ pathway of DNA repair in the nucleus, functions as DNA sensor that detects dsDNA of viruses that replicate in the cytoplasm. Vaccinia virus expresses two proteins, C4 and C16, that inactivate DNA sensing and enhance virulence. The structural basis for this is unknown. Here we determine the structure of the C16 - Ku complex using cryoEM. Ku binds dsDNA by a preformed ring but C16 sterically blocks this access route, abrogating binding to a dsDNA end and its insertion into DNA-PK, thereby averting signalling into the downstream innate immunity system. C4 replicates these activities using a domain with 54% identity to C16. Our results reveal how vaccinia virus subverts the capacity of Ku to recognize viral DNA.


Subject(s)
DNA-Binding Proteins , Vaccinia virus , Vaccinia virus/genetics , DNA-Binding Proteins/metabolism , Ku Autoantigen/metabolism , DNA/metabolism , DNA-Activated Protein Kinase/metabolism
2.
Nat Cancer ; 2(12): 1387-1405, 2021 12.
Article in English | MEDLINE | ID: mdl-34957415

ABSTRACT

Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.


Subject(s)
Extracellular Vesicles , Melanoma , Animals , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Humans , Lymphangiogenesis/physiology , Lymphatic Metastasis , Melanoma/metabolism , Mice , Nerve Tissue Proteins , Receptors, Nerve Growth Factor/genetics , Tumor Microenvironment
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34848541

ABSTRACT

Despite having similar structures, each member of the heteromeric amino acid transporter (HAT) family shows exquisite preference for the exchange of certain amino acids. Substrate specificity determines the physiological function of each HAT and their role in human diseases. However, HAT transport preference for some amino acids over others is not yet fully understood. Using cryo-electron microscopy of apo human LAT2/CD98hc and a multidisciplinary approach, we elucidate key molecular determinants governing neutral amino acid specificity in HATs. A few residues in the substrate-binding pocket determine substrate preference. Here, we describe mutations that interconvert the substrate profiles of LAT2/CD98hc, LAT1/CD98hc, and Asc1/CD98hc. In addition, a region far from the substrate-binding pocket critically influences the conformation of the substrate-binding site and substrate preference. This region accumulates mutations that alter substrate specificity and cause hearing loss and cataracts. Here, we uncover molecular mechanisms governing substrate specificity within the HAT family of neutral amino acid transporters and provide the structural bases for mutations in LAT2/CD98hc that alter substrate specificity and that are associated with several pathologies.


Subject(s)
Amino Acid Transport Systems, Neutral/physiology , Substrate Specificity/physiology , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Transport Systems/metabolism , Amino Acid Transport Systems/physiology , Amino Acid Transport Systems, Neutral/metabolism , Amino Acids/metabolism , Amino Acids, Neutral/metabolism , Biological Transport/physiology , Cryoelectron Microscopy/methods , Fusion Regulatory Protein 1, Heavy Chain/metabolism , HeLa Cells , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Protein Domains , Structure-Activity Relationship
4.
Transl Res ; 237: 82-97, 2021 11.
Article in English | MEDLINE | ID: mdl-34217898

ABSTRACT

Neuroblastoma (NB) is the most common extracranial pediatric solid cancer originating from undifferentiated neural crest cells. NB cells express EZH2 and GLI1 genes that are known to maintain the undifferentiated phenotype of cancer stem cells (CSC) in NB. Recent studies suggest that tumor-derived extracellular vesicles (EVs) can regulate the transformation of surrounding cells into CSC by transferring tumor-specific molecules they contain. However, the horizontal transfer of EVs molecules in NB remains largely unknown. We report the analysis of NB-derived EVs in bioengineered models of NB that are based on a collagen 1/hyaluronic acid scaffold designed to mimic the native tumor niche. Using these models, we observed an enrichment of GLI1 and EZH2 mRNAs in NB-derived EVs. As a consequence of the uptake of NB-derived EVs, the host cells increased the expression levels of GLI1 and EZH2. These results suggest the alteration of the expression profile of stromal cells through an EV-based mechanism, and point the GLI1 and EZH2 mRNAs in the EV cargo as diagnostic biomarkers in NB.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Transfer, Horizontal , Neuroblastoma/metabolism , Zinc Finger Protein GLI1/metabolism , Biomarkers , Cell Differentiation , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Extracellular Vesicles , Humans , Mesenchymal Stem Cells , Microscopy, Electron, Scanning , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stromal Cells , Tissue Engineering , Zinc Finger Protein GLI1/genetics
5.
JCI Insight ; 6(16)2021 08 23.
Article in English | MEDLINE | ID: mdl-34237032

ABSTRACT

Congenital microcephaly (MCPH) is a neurodevelopmental disease associated with mutations in genes encoding proteins involved in centrosomal and chromosomal dynamics during mitosis. Detailed MCPH pathogenesis at the cellular level is still elusive, given the diversity of MCPH genes and lack of comparative in vivo studies. By generating a series of CRISPR/Cas9-mediated genetic KOs, we report here that - whereas defects in spindle pole proteins (ASPM, MCPH5) result in mild MCPH during development - lack of centrosome (CDK5RAP2, MCPH3) or centriole (CEP135, MCPH8) regulators induces delayed chromosome segregation and chromosomal instability in neural progenitors (NPs). Our mouse model of MCPH8 suggests that loss of CEP135 results in centriole duplication defects, TP53 activation, and cell death of NPs. Trp53 ablation in a Cep135-deficient background prevents cell death but not MCPH, and it leads to subcortical heterotopias, a malformation seen in MCPH8 patients. These results suggest that MCPH in some MCPH patients can arise from the lack of adaptation to centriole defects in NPs and may lead to architectural defects if chromosomally unstable cells are not eliminated during brain development.


Subject(s)
Centrioles/genetics , Chromosomal Instability , Microcephaly/genetics , Neural Stem Cells/pathology , Animals , Brain/cytology , Brain/pathology , CRISPR-Cas Systems/genetics , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Centrioles/pathology , Disease Models, Animal , Embryo, Mammalian , Female , Humans , Male , Mice , Mice, Knockout , Microcephaly/pathology , Microscopy, Electron, Transmission , Molecular Imaging , Mutation , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/ultrastructure , Primary Cell Culture , Time-Lapse Imaging , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
EMBO J ; 40(13): e103311, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33978236

ABSTRACT

Due to their capability to transport chemicals or proteins into target cells, cell-penetrating peptides (CPPs) are being developed as therapy delivery tools. However, and despite their interesting properties, arginine-rich CPPs often show toxicity for reasons that remain poorly understood. Using a (PR)n dipeptide repeat that has been linked to amyotrophic lateral sclerosis (ALS) as a model of an arginine-rich CPP, we here show that the presence of (PR)n leads to a generalized displacement of RNA- and DNA-binding proteins from chromatin and mRNA. Accordingly, any reaction involving nucleic acids, such as RNA transcription, translation, splicing and degradation, or DNA replication and repair, is impaired by the presence of the CPPs. Interestingly, the effects of (PR)n are fully mimicked by protamine, a small arginine-rich protein that displaces histones from chromatin during spermatogenesis. We propose that widespread coating of nucleic acids and consequent displacement of RNA- and DNA-binding factors from chromatin and mRNA accounts for the toxicity of arginine-rich CPPs, including those that have been recently associated with the onset of ALS.


Subject(s)
Arginine/genetics , Cell-Penetrating Peptides/genetics , DNA-Binding Proteins/genetics , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Cell Line, Tumor , Chromatin/genetics , DNA/genetics , HeLa Cells , Histones/genetics , Humans , Nucleic Acids/genetics , RNA/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , Spermatogenesis/genetics
7.
Elife ; 92020 11 18.
Article in English | MEDLINE | ID: mdl-33205750

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that degrades aberrant mRNAs and also regulates the expression of a wide range of physiological transcripts. RUVBL1 and RUVBL2 AAA-ATPases form an hetero-hexameric ring that is part of several macromolecular complexes such as INO80, SWR1, and R2TP. Interestingly, RUVBL1-RUVBL2 ATPase activity is required for NMD activation by an unknown mechanism. Here, we show that DHX34, an RNA helicase regulating NMD initiation, directly interacts with RUVBL1-RUVBL2 in vitro and in cells. Cryo-EM reveals that DHX34 induces extensive changes in the N-termini of every RUVBL2 subunit in the complex, stabilizing a conformation that does not bind nucleotide and thereby down-regulates ATP hydrolysis of the complex. Using ATPase-deficient mutants, we find that DHX34 acts exclusively on the RUVBL2 subunits. We propose a model, where DHX34 acts to couple RUVBL1-RUVBL2 ATPase activity to the assembly of factors required to initiate the NMD response.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cryoelectron Microscopy , DNA Helicases/metabolism , RNA Helicases/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Carrier Proteins/genetics , Cloning, Molecular , DNA Helicases/genetics , Gene Expression Regulation, Enzymologic , HEK293 Cells , Humans , RNA Helicases/genetics
8.
EMBO J ; 39(19): e104743, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32779739

ABSTRACT

Focal adhesion kinase (FAK) is a key component of the membrane proximal signaling layer in focal adhesion complexes, regulating important cellular processes, including cell migration, proliferation, and survival. In the cytosol, FAK adopts an autoinhibited state but is activated upon recruitment into focal adhesions, yet how this occurs or what induces structural changes is unknown. Here, we employ cryo-electron microscopy to reveal how FAK associates with lipid membranes and how membrane interactions unlock FAK autoinhibition to promote activation. Intriguingly, initial binding of FAK to the membrane causes steric clashes that release the kinase domain from autoinhibition, allowing it to undergo a large conformational change and interact itself with the membrane in an orientation that places the active site toward the membrane. In this conformation, the autophosphorylation site is exposed and multiple interfaces align to promote FAK oligomerization on the membrane. We show that interfaces responsible for initial dimerization and membrane attachment are essential for FAK autophosphorylation and resulting cellular activity including cancer cell invasion, while stable FAK oligomerization appears to be needed for optimal cancer cell proliferation in an anchorage-independent manner. Together, our data provide structural details of a key membrane bound state of FAK that is primed for efficient autophosphorylation and activation, hence revealing the critical event in integrin mediated FAK activation and signaling at focal adhesions.


Subject(s)
Avian Proteins/chemistry , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Membranes/chemistry , Protein Multimerization , Animals , Avian Proteins/metabolism , Chickens , Enzyme Activation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , HEK293 Cells , Humans , Membranes/enzymology , Structure-Activity Relationship
10.
J Exp Med ; 216(5): 1061-1070, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30975894

ABSTRACT

Liquid biopsies from cancer patients have the potential to improve diagnosis and prognosis. The assessment of surrogate markers of tumor progression in circulating extracellular vesicles could be a powerful non-invasive approach in this setting. We have characterized extracellular vesicles purified from the lymphatic drainage also known as exudative seroma (ES) of stage III melanoma patients obtained after lymphadenectomy. Proteomic analysis showed that seroma-derived exosomes are enriched in proteins resembling melanoma progression. In addition, we found that the BRAFV600E mutation can be detected in ES-derived extracellular vesicles and its detection correlated with patients at risk of relapse.


Subject(s)
Disease Progression , Extracellular Vesicles/metabolism , Exudates and Transudates/metabolism , Melanoma/genetics , Melanoma/metabolism , Mutation , Proto-Oncogene Proteins B-raf/genetics , Seroma/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cohort Studies , Disease-Free Survival , Drainage , Exosomes/metabolism , Female , Humans , Lymphatic Metastasis , Male , Melanoma/pathology , Middle Aged , Proteomics/methods , Skin Neoplasms/pathology
11.
Nucleic Acids Res ; 46(8): 4176-4187, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29415133

ABSTRACT

The topology and dynamics of the scanning ribosomal 43S pre-initiation complex (PIC) bound to mRNA and initiation factors (eIFs) are probably the least understood aspects of translation initiation in eukaryotes. Recently, we described a trapping mechanism in alphavirus that stalls the PIC during scanning of viral mRNA. Using this model, we were able to snapshot for the first time the eIF4A helicase bound to mRNA in a 48S initiation complex assembled in vitro. This interaction was only detected in the presence of the natural stem loop structure (DLP) located downstream from the AUG in viral mRNA that promoted stalling of the PIC, suggesting that DLP stability was enough to jam the helicase activity of eIF4A in a fraction of assembled 48S complexes. However, a substantial proportion of DLP mRNA molecules were effectively unwound by eIF4A in vitro, an activity that alphaviruses counteract in infected cells by excluding eIF4A from viral factories. Our data indicated that eIF4A-mRNA contact occurred in (or near) the ES6S region of the 40S subunit, suggesting that incoming mRNA sequences penetrate through the ES6S region during the scanning process. We propose a topological model of the scanning PIC and how some viruses have exploited this topology to translate their mRNAs with fewer eIF requirements.


Subject(s)
Alphavirus/genetics , Eukaryotic Initiation Factor-4A/chemistry , Peptide Chain Initiation, Translational , RNA, Messenger/chemistry , RNA, Viral/chemistry , Ribosome Subunits, Small, Eukaryotic/chemistry , Animals , Cell Line , Eukaryotic Initiation Factor-4A/metabolism , Models, Molecular , RNA, Messenger/metabolism , RNA, Viral/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism
12.
Structure ; 25(6): 912-923.e5, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28552578

ABSTRACT

CAD, the multifunctional protein initiating and controlling de novo biosynthesis of pyrimidines in animals, self-assembles into ∼1.5 MDa hexamers. The structures of the dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains of human CAD have been previously determined, but we lack information on how these domains associate and interact with the rest of CAD forming a multienzymatic unit. Here, we prove that a construct covering human DHO and ATC oligomerizes as a dimer of trimers and that this arrangement is conserved in CAD-like from fungi, which holds an inactive DHO-like domain. The crystal structures of the ATC trimer and DHO-like dimer from the fungus Chaetomium thermophilum confirm the similarity with the human CAD homologs. These results demonstrate that, despite being inactive, the fungal DHO-like domain has a conserved structural function. We propose a model that sets the DHO and ATC complex as the central element in the architecture of CAD.


Subject(s)
Aspartate Carbamoyltransferase/chemistry , Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/chemistry , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Dihydroorotase/chemistry , Dihydroorotase/metabolism , Aspartate Carbamoyltransferase/genetics , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Carbamyl Phosphate/chemistry , Carbamyl Phosphate/metabolism , Chaetomium/enzymology , Crystallography, X-Ray , Dihydroorotase/genetics , Humans , Microscopy, Electron , Models, Molecular , Mutagenesis, Site-Directed , Protein Domains , Protein Multimerization , Pyrimidines/biosynthesis
13.
J Biol Chem ; 291(41): 21829-21835, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27563064

ABSTRACT

Telomeres are specific DNA-protein structures found at both ends of eukaryotic chromosomes that protect the genome from degradation and from being recognized as double-stranded breaks. In vertebrates, telomeres are composed of tandem repeats of the TTAGGG sequence that are bound by a six-subunit complex called shelterin. Molecular mechanisms of telomere functions remain unknown in large part due to lack of structural data on shelterins, shelterin complex, and its interaction with the telomeric DNA repeats. TRF1 is one of the best studied shelterin components; however, the molecular architecture of the full-length protein remains unknown. We have used single-particle electron microscopy to elucidate the structure of TRF1 and its interaction with telomeric DNA sequence. Our results demonstrate that full-length TRF1 presents a molecular architecture that assists its interaction with telometic DNA and at the same time makes TRFH domains accessible to other TRF1 binding partners. Furthermore, our studies suggest hypothetical models on how other proteins as TIN2 and tankyrase contribute to regulate TRF1 function.


Subject(s)
DNA/chemistry , Tandem Repeat Sequences , Telomere/chemistry , Telomeric Repeat Binding Protein 1/chemistry , Animals , DNA/metabolism , Mice , Protein Domains , Sf9 Cells , Spodoptera , Tankyrases/chemistry , Tankyrases/genetics , Tankyrases/metabolism , Telomere/metabolism , Telomere-Binding Proteins/chemistry , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/metabolism , Telomeric Repeat Binding Protein 2/chemistry , Telomeric Repeat Binding Protein 2/genetics , Telomeric Repeat Binding Protein 2/metabolism
14.
Cell Cycle ; 15(18): 2431-40, 2016 Sep 16.
Article in English | MEDLINE | ID: mdl-27249176

ABSTRACT

DNA replication is a key biological process that involves different protein complexes whose assembly is rigorously regulated in a successive order. One of these complexes is a replicative hexameric helicase, the MCM complex, which is essential for the initiation and elongation phases of replication. After the assembly of a double heterohexameric MCM2-7 complex at replication origins in G1, the 2 heterohexamers separate from each other and associate with Cdc45 and GINS proteins in a CMG complex that is capable of unwinding dsDNA during S phase. Here, we have reconstituted and characterized the purified human MCM2-7 (hMCM2-7) hexameric complex by co-expression of its 6 different subunits in insect cells. The conformational variability of the complex has been analyzed by single particle electron microscopy in the presence of different nucleotide analogs and DNA. The interaction with nucleotide stabilizes the complex while DNA introduces conformational changes in the hexamer inducing a cylindrical shape. Our studies suggest that the assembly of GINS and Cdc45 to the hMCM2-7 hexamer would favor conformational changes on the hexamer bound to ssDNA shifting the cylindrical shape of the complex into a right-handed spiral conformation as observed in the CMG complex bound to DNA.


Subject(s)
DNA/metabolism , Minichromosome Maintenance Proteins/chemistry , Nucleotides/metabolism , Recombinant Proteins/chemistry , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , DNA/chemistry , Humans , Imaging, Three-Dimensional , Minichromosome Maintenance Proteins/isolation & purification , Minichromosome Maintenance Proteins/ultrastructure , Models, Molecular , Nucleotides/chemistry , Protein Conformation , Protein Stability , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
15.
Nucleic Acids Res ; 44(9): 4368-80, 2016 05 19.
Article in English | MEDLINE | ID: mdl-26984530

ABSTRACT

During translation initiation, eukaryotic initiation factor 2 (eIF2) delivers the Met-tRNA to the 40S ribosomal subunit to locate the initiation codon (AUGi) of mRNA during the scanning process. Stress-induced eIF2 phosphorylation leads to a general blockade of translation initiation and represents a key antiviral pathway in mammals. However, some viral mRNAs can initiate translation in the presence of phosphorylated eIF2 via stable RNA stem-loop structures (DLP; Downstream LooP) located in their coding sequence (CDS), which promote 43S preinitiation complex stalling on the initiation codon. We show here that during the scanning process, DLPs of Alphavirus mRNA become trapped in ES6S region (680-914 nt) of 18S rRNA that are projected from the solvent side of 40S subunit. This trapping can lock the progress of the 40S subunit on the mRNA in a way that places the upstream initiator AUGi on the P site of 40S subunit, obviating the participation of eIF2. Notably, the DLP structure is released from 18S rRNA upon 60S ribosomal subunit joining, suggesting conformational changes in ES6Ss during the initiation process. These novel findings illustrate how viral mRNA is threaded into the 40S subunit during the scanning process, exploiting the topology of the 40S subunit solvent side to enhance its translation in vertebrate hosts.


Subject(s)
Alphavirus/genetics , Peptide Chain Initiation, Translational , RNA, Messenger/genetics , RNA, Viral/genetics , Aedes , Alphavirus/metabolism , Animals , Base Sequence , Cell Line , Codon, Initiator , Cricetinae , Gene Expression Regulation, Viral , Inverted Repeat Sequences , Models, Molecular , RNA Stability , RNA, Messenger/chemistry , RNA, Messenger/metabolism , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 18S/physiology , RNA, Viral/chemistry , RNA, Viral/metabolism , Ribosomes/physiology
16.
Proc Natl Acad Sci U S A ; 113(3): E396-405, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26719420

ABSTRACT

Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Calcium/metabolism , Cell Membrane/metabolism , Protein Multimerization , Signal Transduction , Abscisic Acid/pharmacology , Arabidopsis Proteins/chemistry , Binding Sites , Calorimetry , Cell Membrane/drug effects , Crystallography, X-Ray , Models, Biological , Phenotype , Phospholipids/chemistry , Protein Binding/drug effects , Protein Multimerization/drug effects , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Transport/drug effects , Signal Transduction/drug effects , Solutions , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
17.
J Struct Biol ; 191(2): 100-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26169224

ABSTRACT

MuB is an ATP-dependent DNA-binding protein that regulates the activity of MuA transposase and delivers the target DNA for transposition of phage Mu. Mechanistic insight into MuB function is limited to its AAA+ ATPase module, which upon ATP binding assembles into helical filaments around the DNA. However, the structure and function of the flexible N-terminal domain (NTD) appended to the AAA+ module remains uncharacterized. Here we report the solution structure of MuB NTD determined by NMR spectroscopy. The structure reveals a compact domain formed by four α-helices connected by short loops, and confirms the presence of a helix-turn-helix motif. High structural similarity and sequence homology with λ repressor-like DNA-binding domains suggest a possible role of MuB NTD in DNA binding. We also demonstrate that the NTD directly mediates the ability of MuB to establish filament-filament interactions. These findings lead us to a model in which the NTD interacts with the AAA+ spirals and perhaps also with the DNA bound within the filament, favoring MuB polymerization and filament clustering. We propose that the MuB NTD-dependent filament interactions might be an effective mechanism to bridge distant DNA regions during Mu transposition.


Subject(s)
DNA-Binding Proteins/chemistry , Viral Proteins/chemistry , Binding Sites , DNA/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Structure-Activity Relationship
18.
Proc Natl Acad Sci U S A ; 111(31): E3177-86, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25049397

ABSTRACT

Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase (NRTK) with key roles in integrating growth and cell matrix adhesion signals, and FAK is a major driver of invasion and metastasis in cancer. Cell adhesion via integrin receptors is well known to trigger FAK signaling, and many of the players involved are known; however, mechanistically, FAK activation is not understood. Here, using a multidisciplinary approach, including biochemical, biophysical, structural, computational, and cell biology approaches, we provide a detailed view of a multistep activation mechanism of FAK initiated by phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. Interestingly, the mechanism differs from canonical NRTK activation and is tailored to the dual catalytic and scaffolding function of FAK. We find PI(4,5)P2 induces clustering of FAK on the lipid bilayer by binding a basic region in the regulatory 4.1, ezrin, radixin, moesin homology (FERM) domain. In these clusters, PI(4,5)P2 induces a partially open FAK conformation where the autophosphorylation site is exposed, facilitating efficient autophosphorylation and subsequent Src recruitment. However, PI(4,5)P2 does not release autoinhibitory interactions; rather, Src phosphorylation of the activation loop in FAK results in release of the FERM/kinase tether and full catalytic activation. We propose that PI(4,5)P2 and its generation in focal adhesions by the enzyme phosphatidylinositol 4-phosphate 5-kinase type Iγ are important in linking integrin signaling to FAK activation.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/chemistry , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Adenosine Triphosphate/pharmacology , Allosteric Regulation/drug effects , Amino Acid Sequence , Amino Acids/metabolism , Biocatalysis/drug effects , Cell Adhesion/drug effects , Cluster Analysis , Enzyme Activation/drug effects , Fluorescence Resonance Energy Transfer , Focal Adhesion Protein-Tyrosine Kinases/ultrastructure , Gene Knockdown Techniques , HeLa Cells , Humans , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation/drug effects , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding/drug effects , Protein Structure, Tertiary , Signal Transduction/drug effects , src-Family Kinases/metabolism
19.
Nucleic Acids Res ; 40(3): 1366-80, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21984415

ABSTRACT

DNA replication is strictly regulated through a sequence of steps that involve many macromolecular protein complexes. One of them is the replicative helicase, which is required for initiation and elongation phases. A MCM helicase found as a prophage in the genome of Bacillus cereus is fused with a primase domain constituting an integrative arrangement of two essential activities for replication. We have isolated this helicase-primase complex (BcMCM) showing that it can bind DNA and displays not only helicase and primase but also DNA polymerase activity. Using single-particle electron microscopy and 3D reconstruction, we obtained structures of BcMCM using ATPγS or ADP in the absence and presence of DNA. The complex depicts the typical hexameric ring shape. The dissection of the unwinding mechanism using site-directed mutagenesis in the Walker A, Walker B, arginine finger and the helicase channels, suggests that the BcMCM complex unwinds DNA following the extrusion model similarly to the E1 helicase from papillomavirus.


Subject(s)
Bacterial Proteins/chemistry , DNA Helicases/chemistry , DNA Primase/chemistry , Adenosine Diphosphate/chemistry , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacillus cereus/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/ultrastructure , DNA/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA Primase/genetics , DNA Primase/metabolism , DNA Primase/ultrastructure , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleotides/metabolism , Models, Molecular , Mutation , Protein Structure, Tertiary
20.
Biophys J ; 94(5): 1796-806, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-18024502

ABSTRACT

Essential cell division protein FtsZ is an assembling GTPase which directs the cytokinetic ring formation in dividing bacterial cells. FtsZ shares the structural fold of eukaryotic tubulin and assembles forming tubulin-like protofilaments, but does not form microtubules. Two puzzling problems in FtsZ assembly are the nature of protofilament association and a possible mechanism for nucleated self-assembly of single-stranded protofilaments above a critical FtsZ concentration. We assembled two-dimensional arrays of FtsZ on carbon supports, studied linear polymers of FtsZ with cryo-electron microscopy of vitrified unsupported solutions, and formulated possible polymerization models. Nucleated self-assembly of FtsZ from Escherichia coli with GTP and magnesium produces flexible filaments 4-6 nm-wide, only compatible with a single protofilament. This agrees with previous scanning transmission electron microscopy results and is supported by recent cryo-electron tomography studies of two bacterial cells. Observations of double-stranded FtsZ filaments in negative stain may come from protofilament accretion on the carbon support. Preferential protofilament cyclization does not apply to FtsZ assembly. The apparently cooperative polymerization of a single protofilament with identical intermonomer contacts is explained by the switching of one inactive monomer into the active structure preceding association of the next, creating a dimer nucleus. FtsZ behaves as a cooperative linear assembly machine.


Subject(s)
Bacterial Proteins/chemistry , Cytoskeletal Proteins/chemistry , Escherichia coli/metabolism , Eukaryotic Cells/metabolism , Polymers/chemistry , Binding Sites , Carbon/chemistry , Carbon/metabolism , Cryoelectron Microscopy , Escherichia coli/cytology , Eukaryotic Cells/cytology , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Isomerism , Magnesium/chemistry , Magnesium/metabolism , Microscopy, Electron, Scanning Transmission , Models, Biological , Protein Conformation , Protein Folding , Tubulin/chemistry , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...