Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 16675, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030261

ABSTRACT

Weighted Gene Co-expression Network Analysis (WGCNA) is a widely used approach for the generation of gene co-expression networks. However, networks generated with this tool usually create large modules with a large set of functional annotations hard to decipher. We have developed TGCN, a new method to create Targeted Gene Co-expression Networks. This method identifies the transcripts that best predict the trait of interest based on gene expression using a refinement of the LASSO regression. Then, it builds the co-expression modules around those transcripts. Algorithm properties were characterized using the expression of 13 brain regions from the Genotype-Tissue Expression project. When comparing our method with WGCNA, TGCN networks lead to more precise modules that have more specific and yet rich biological meaning. Then, we illustrate its applicability by creating an APP-TGCN on The Religious Orders Study and Memory and Aging Project dataset, aiming to identify the molecular pathways specifically associated with APP role in Alzheimer's disease. Main biological findings were further validated in two independent cohorts. In conclusion, we provide a new framework that serves to create targeted networks that are smaller, biologically relevant and useful in high throughput hypothesis driven research. The TGCN R package is available on Github: https://github.com/aliciagp/TGCN .


Subject(s)
Algorithms , Alzheimer Disease , Gene Regulatory Networks , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Gene Expression Profiling/methods , Brain/metabolism , Computational Biology/methods
2.
bioRxiv ; 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37034741

ABSTRACT

Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.

SELECTION OF CITATIONS
SEARCH DETAIL