Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38569959

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Crops, Agricultural , Environmental Monitoring , Pesticides , Pollination , Animals , Bees/physiology , Pesticides/analysis , Pollen , Malus , Environmental Exposure/statistics & numerical data
2.
Microb Genom ; 10(3)2024 Mar.
Article En | MEDLINE | ID: mdl-38536216

Streptococcus suis is a leading cause of infection in pigs, causing extensive economic losses. In addition, it can also infect wild fauna, and can be responsible for severe infections in humans. Increasing antimicrobial resistance (AMR) has been described in S. suis worldwide and most of the AMR genes are carried by mobile genetic elements (MGEs). This contributes to their dissemination by horizontal gene transfer. A collection of 102 strains isolated from humans, pigs and wild boars in France was subjected to whole genome sequencing in order to: (i) study their genetic diversity, (ii) evaluate their content in virulence-associated genes, (iii) decipher the mechanisms responsible for their AMR and their association with MGEs, and (iv) study their ability to acquire extracellular DNA by natural transformation. Analysis by hierarchical clustering on principal components identified a few virulence-associated factors that distinguish invasive CC1 strains from the other strains. A plethora of AMR genes (n=217) was found in the genomes. Apart from the frequently reported erm(B) and tet(O) genes, more recently described AMR genes were identified [vga(F)/sprA, vat(D)]. Modifications in PBPs/MraY and GyrA/ParC were detected in the penicillin- and fluoroquinolone-resistant isolates respectively. New AMR gene-MGE associations were detected. The majority of the strains have the full set of genes required for competence, i.e for the acquisition of extracellular DNA (that could carry AMR genes) by natural transformation. Hence the risk of dissemination of these AMR genes should not be neglected.


Streptococcus suis , Humans , Animals , Swine , Virulence , France , Virulence Factors , DNA
3.
Sci Rep ; 14(1): 3524, 2024 02 12.
Article En | MEDLINE | ID: mdl-38347035

Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.


Bacteria , Pollination , Bees , Animals , Europe
4.
Prev Vet Med ; 222: 106081, 2024 Jan.
Article En | MEDLINE | ID: mdl-38061266

The present study analysed the importance of individual variables and different thematic blocks of production areas, management, and herd infectious disease status on cow persistence, characterised by herd on-farm mortality rate (MR), culling rate (CR), and mean age of culled cows (MAofCC) applying multiblock partial least squares (mbPLS) analysis. This study included 120 free-stall dairy herds with ≥ 100 cows. Data on the previous year's predominant cow housing system and management practices were collected, and on-farm measurements and cow scoring were performed. Bulk tank milk (BTM) and heifer blood samples (10 samples per herd) were collected and analysed for antibodies against the selected pathogens. In total, 172 variables were aggregated into 14 thematic blocks. The annual CR, MR, and MAofCC values were calculated for each herd. Thematic blocks with significant impact on cow persistence (included herd MR, CR and MAofCC) were 'infectious diseases' (block importance index out of all blocks = 13.6%, 95% CI 10.3; 20.5), 'fertility management' (16.3%, 95% CI 6.8; 26.9), 'lactating cow management' (11.5%, 95% CI 6.4; 17.8), 'milking' (11.3%, 95% CI 3.2; 17.1), 'herd characteristics' (10.1%, 95% CI 6.3; 14.2), 'close-up period management' (9.7%, 95% CI 2.7; 15.7), 'calving management' (7.9%, 95% CI 3.1; 11.4) and 'disease management' (7.3%, 95% CI 0.2; 12.0). Variable categories with the highest importance in explaining composite outcome including herd MR, CR and MAofCC were rear-end and udder lesions in ≥ 20% of the cows, BTM and heifers seropositive to bovine respiratory syncytial virus, vaccination against bovine herpesvirus 1, twice daily milking and herd location in Northwest region. Larger herd size, higher levels of milk yield, and rearing predominantly Holstein breed cattle were herd factors associated with poorer cow persistency. Grazing cows and having semi-insulated barns were associated with lower CR and MR, respectively. Heat detection and farm pregnancy testing strategies were significant factors in the fertility block. Using disposable dry papers for teat cleaning and not using any wet teat-cleaning tools were risk factors for high MR. A robotic milking system was protective for increased herd MR and CR. A high pre-calving body condition score and poor rear body cleanliness of ≥ 30% of cows were associated with inferior herd persistency outcomes. Calving in group pens with deep litter bedding was associated with a lower CR. Multiblock PLS model is innovative tool that helped to identify most influential farming areas but also single risk factors associated with cow persistency described by multiple parameters.


Cattle Diseases , Lactation , Pregnancy , Cattle , Animals , Female , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Dairying , Milk , Risk Factors
5.
Int J Biostat ; 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38083810

Studying a large number of variables measured on the same observations and organized in blocks - denoted multiblock data - is becoming standard in several domains especially in biology. To explore the relationships between all these variables - at the block- and the variable-level - several exploratory multiblock methods were proposed. However, most of them are only designed for numeric variables. In reality, some data sets contain variables of different measurement levels (i.e., numeric, nominal, ordinal). In this article, we focus on exploratory multiblock methods that handle variables at their appropriate measurement level. Multi-Block Principal Component Analysis with Optimal Scaling (MBPCA-OS) is proposed and applied to multiblock data from the CURIE-O-SA French cohort. In this study, variables are of different measurement levels and organized in four blocks. The objective is to study the immune responses according to the SARS-CoV-2 infection and vaccination statuses, the symptoms and the participant's characteristics.

6.
JMIR Public Health Surveill ; 9: e46898, 2023 Nov 28.
Article En | MEDLINE | ID: mdl-38015594

BACKGROUND: The seroprevalence of SARS-CoV-2 infection in the French population was estimated with a representative, repeated cross-sectional survey based on residual sera from routine blood testing. These data contained no information on infection or vaccination status, thus limiting the ability to detail changes observed in the immunity level of the population over time. OBJECTIVE: Our aim is to predict the infected or vaccinated status of individuals in the French serosurveillance survey based only on the results of serological assays. Reference data on longitudinal serological profiles of seronegative, infected, and vaccinated individuals from another French cohort were used to build the predictive model. METHODS: A model of individual vaccination or infection status with respect to SARS-CoV-2 obtained from a machine learning procedure was proposed based on 3 complementary serological assays. This model was applied to the French nationwide serosurveillance survey from March 2020 to March 2022 to estimate the proportions of the population that were negative, infected, vaccinated, or infected and vaccinated. RESULTS: From February 2021 to March 2022, the estimated percentage of infected and unvaccinated individuals in France increased from 7.5% to 16.8%. During this period, the estimated percentage increased from 3.6% to 45.2% for vaccinated and uninfected individuals and from 2.1% to 29.1% for vaccinated and infected individuals. The decrease in the seronegative population can be largely attributed to vaccination. CONCLUSIONS: Combining results from the serosurveillance survey with more complete data from another longitudinal cohort completes the information retrieved from serosurveillance while keeping its protocol simple and easy to implement.


COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cross-Sectional Studies , SARS-CoV-2 , Seroepidemiologic Studies , Machine Learning , Vaccination
7.
Vet Res ; 54(1): 101, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37904195

Infectious bursal disease (IBD) is an avian viral disease caused in chickens by infectious bursal disease virus (IBDV). IBDV strains (Avibirnavirus genus, Birnaviridae family) exhibit different pathotypes, for which no molecular marker is available yet. The different pathotypes, ranging from sub-clinical to inducing immunosuppression and high mortality, are currently determined through a 10-day-long animal experiment designed to compare mortality and clinical score of the uncharacterized strain with references strains. Limits of this protocol lie within standardization and the extensive use of animal experimentation. The aim of this study was to establish a predictive model of viral pathotype based on a minimum number of early parameters measured during infection, allowing faster pathotyping of IBDV strains with improved ethics. We thus measured, at 2 and 4 days post-infection (dpi), the blood concentrations of various immune and coagulation related cells, the uricemia and the infectious viral load in the bursa of Fabricius of chicken infected under standardized conditions with a panel of viruses encompassing the different pathotypes of IBDV. Machine learning algorithms allowed establishing a predictive model of the pathotype based on early changes of the blood cell formula, whose accuracy reached 84.1%. Its accuracy to predict the attenuated and strictly immunosuppressive pathotypes was above 90%. The key parameters for this model were the blood concentrations of B cells, T cells, monocytes, granulocytes, thrombocytes and erythrocytes of infected chickens at 4 dpi. This predictive model could be a second option to traditional IBDV pathotyping that is faster, and more ethical.


Birnaviridae Infections , Infectious bursal disease virus , Poultry Diseases , Animals , Chickens , Bursa of Fabricius , B-Lymphocytes , Blood Cell Count/veterinary , Birnaviridae Infections/veterinary
8.
Microorganisms ; 11(10)2023 Oct 15.
Article En | MEDLINE | ID: mdl-37894223

Salmonella is the most relevant foodborne zoonotic agent found in swine, and its presence in French herds is significant. Its carriage is asymptomatic, which makes it difficult to detect during rearing, thus increasing the risk of its presence on pork meat. Studies have shown that enteric infection in animals could be associated with changes in the serum metabolome composition, through the immune response or changes in the digestive microbiota composition. We hypothesized that these changes in the serum metabolome composition could be used as markers for the detection of asymptomatic animals infected by Salmonella. Using untargeted analysis by liquid chromatography coupled with mass spectrometry, we showed that significant differences in the composition of the serum metabolome could be detected between infected or noninfected animals both 1 and 21 days after experimental infection. This serum metabolome composition significantly changed during the 21 days postinfection in the infected animal groups, suggesting an evolution of the impact of infection with time. Despite this evolution, differences in the serum metabolome composition persisted between infected and noninfected animals 21 days after the initial infection. We also showed a possible difference between high-shedding and low-shedding animals 21 days postinfection. Finally, some of the variations in the metabolome were found to be significantly associated with variations of specific members of the fecal microbiota. Thus, excreting and asymptomatic animals, but also high-shedding animals, could be identified on the basis of their serum metabolome composition.

9.
J Clin Microbiol ; 61(9): e0016423, 2023 09 21.
Article En | MEDLINE | ID: mdl-37655935

Streptococcus suis, an emerging zoonotic pathogen, causes invasive infections and substantial economic losses in the pig industry worldwide. Antimicrobial resistance against 22 antibiotics was studied for 200 S. suis strains collected in different geographical regions of France. Most of the strains (86%) showed resistance to at least one antibiotic with a low rate of resistance to fluoroquinolones, penicillins, pleuromutilin, and diaminopyrimidine-sulfonamides, and a higher rate to macrolides-lincosamides and tetracycline. Multi-resistance patterns were observed in 138 strains; three of them being resistant to six antibiotic families. Statistical analyses highlighted a decrease in the resistance to trimethoprim-sulfamethoxazole, in our collection, between the two periods studied-before 2010 and after 2015-as well as an impact of the geographical origin with a higher rate of resistance to macrolides-lincosamides and penicillin in Brittany than in the other French regions. Furthermore, macrolides-lincosamides and tetracycline resistance patterns were more likely to be found in pig isolates than in human and wild boar isolates. A difference in resistance was also observed between serotypes. Most of the penicillin-resistant strains belong to serotypes 1, 5, 9, 11, 12, 15, 27, and 29. Finally, penicillin and pleuromutilin resistances were mostly found in "non-clinical" isolates. The empirical treatment of human and porcine infections due to S. suis in France can therefore still be carried out with beta-lactams. However, this study emphasizes the need to monitor antimicrobial resistance in this zoonotic pathogen.


Anti-Bacterial Agents , Streptococcus suis , Humans , Animals , Swine , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Penicillins , France/epidemiology , Lincosamides , Macrolides/pharmacology , Sus scrofa , Pleuromutilins
10.
Infect Immun ; 91(7): e0015723, 2023 07 18.
Article En | MEDLINE | ID: mdl-37255474

Yersinia enterocolitica (Ye) is one of the major causes of foodborne zoonosis. The BT4/O:3 bioserotype is most commonly isolated in human infections. Pigs are considered the main reservoir of Ye, and hence, understanding the dynamics of infection by this pathogen at the individual and group levels is crucial. In the present study, an experimental model was validated in Large White pigs infected with a BT4/O:3 strain. This study showed that Ye contamination in pigs may occur via the introduction of the bacteria not only by mouth but also by snout, with a colonization process consisting of three periods corresponding to three contamination statuses of pigs: P1, corresponding to the 24 h following ingestion or inhalation of Ye with the appearance of bacteria in tonsils or in feces; P2, from 2 days postinoculation (dpi), corresponding to expansion of Ye and colonization of the digestive system and extraintestinal organs associated with an IgG serological response; and P3, after 21 dpi, corresponding to regression of colonization with intermittent Ye detection in tonsils and feces. Although the inoculated strain persisted up to 56 dpi in all pigs, genetic variations with the loss of the gene yadA (a gene involved in human infection) and the emergence of two new multilocus variable-number tandem-repeat analysis (MLVA) profiles were observed in 33% of the 30 isolates studied. This experimental infection model of pigs by Ye provides new insights into the colonization steps in pigs in terms of bacterial distribution over time and bacterial genetic stability.


Yersinia Infections , Yersinia enterocolitica , Swine , Animals , Humans , Yersinia enterocolitica/genetics , Virulence , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Genetic Markers , Mouth
11.
Vet Microbiol ; 282: 109757, 2023 Jul.
Article En | MEDLINE | ID: mdl-37119567

Enterococcus cecorum is a member of the normal poultry gut microbiota and an emerging poultry pathogen. Some strains are resistant to key antibiotics and coccidiostats. We evaluated the impact on chicken excretion and persistence of a multidrug-resistant E. cecorum of administering narasin or antibiotics. E. cecorum CIRMBP-1294 (Ec1294) is non-wild-type to many antimicrobials, including narasin, levofloxacin, oxytetracycline and glycopeptides, it has a low susceptibility to amoxicillin, and carries a chromosomal vanA operon. Six groups of 15 chicks each were orally inoculated with Ec1294 and two groups were left untreated. Amoxicillin, oxytetracycline or narasin were administered orally to one group each, either at the recommended dose for five days (amoxicillin, oxytetracycline) or continuously (narasin). Faecal samples were collected weekly and caecal samples were obtained from sacrificed birds on day 28. Ec1294 titres were evaluated by culture on vancomycin- and levofloxacin-supplemented media in 5 % CO2. For inoculated birds given narasin, oxytetracycline or no antimicrobials, vancomycin-resistant enterococci were searched by culture on vancomycin-supplemented media incubated in air, and a PCR was used to detect the vanA gene. Ec1294 persisted in inoculated chicks up to day 28. Compared to the control group, the Ec1294 titre was significantly lower in the amoxicillin- and narasin-receiving groups on days 21 and 28, but was unexpectedly higher in the oxytetracycline-receiving group before and after oxytetracycline administration, preventing a conclusion for this group. No transfer of the vanA gene to other enterococci was detected. Other trials in various experimental conditions should now be conducted to confirm this apparent absence of co-selection of the multi-drug-resistant E. cecorum by narasin or amoxicillin administration.


Anti-Bacterial Agents , Oxytetracycline , Animals , Anti-Bacterial Agents/pharmacology , Vancomycin , Chickens , Oxytetracycline/pharmacology , Levofloxacin , Amoxicillin/pharmacology
12.
Virus Res ; 323: 198999, 2023 Jan 02.
Article En | MEDLINE | ID: mdl-36379388

The antigenic characterization of IBDV, a virus that causes an immunosuppressive disease in young chickens, has been historically addressed using cross virus neutralization (VN) assay and antigen-capture enzyme-linked immunosorbent (AC-ELISA). However, VN assay has been usually carried out either in specific antibody negative embryonated eggs, for non-cell culture adapted strains, which is tedious, or on chicken embryo fibroblasts (CEF), which requires virus adaptation to cell culture. AC-ELISA has provided crucial information about IBDV antigenicity, but this information is limited to the epitopes included in the tested panel with a lack of information of overall antigenic view. The present work aimed at overcoming those technical limitations and providing an extensive antigenic landscape based on original cross VN assays employing primary chicken B cells, where no previous IBDV adaptation is required. Sixteen serotype 1 IBDV viruses, comprising both reference strains and documented antigenic variants were tested against eleven chicken post-infectious sera. The VN data were analysed by antigenic cartography, a method which enables reliable high-resolution quantitative and visual interpretation of large binding assay datasets. The resulting antigenic cartography revealed i) the existence of several antigenic clusters of IBDV, ii) high antigenic relatedness between some genetically unrelated viruses, iii) a highly variable contribution to global antigenicity of previously identified individual epitopes and iv) broad reactivity of chicken sera raised against antigenic variants. This study provides an overall view of IBDV antigenic diversity. Implementing this approach will be instrumental to follow the evolution of IBDV antigenicity and control the disease.

13.
Front Vet Sci ; 9: 1058294, 2022.
Article En | MEDLINE | ID: mdl-36458056

End-point and real-time avian metapneumovirus (AMPV) RT-PCRs have been developed to detect one or two of the four recognized subgroups (A,B,C, and D) simultaneously or for broad range AMPV detection. Current subgroup specific tests target variable areas of the genome which makes these PCRs sensitive to specificity defects as recently documented. In the current study, a single five-plex digital droplet RT-PCR targeting the conserved viral polymerase gene of AMPV, which is less prone to genetic drift, has been designed. This digital droplet RT-PCR was capable of identifying each of the four AMPV subgroups. Each subgroup was identified according to a specifically assigned fluorescent amplitude. Specificity, which was tested including 31 AMPV strains, non-AMPV avian viruses and closely related human respiratory viruses, was 100%. The specific limit of detection for extracted viral RNA was estimated between 1 and 3 copies/µl. This tool simplifies the number of tests required for AMPV genotype diagnostics and should be theoretically less effected by viral genome evolution due to its target region. Ultimately, application of this test will contribute to an improved understanding of the global geographic distribution and subgroup host range of field strains.

14.
Vet Microbiol ; 273: 109530, 2022 Oct.
Article En | MEDLINE | ID: mdl-35961274

Avian colibacillosis is the main bacterial infectious disease in poultry and is caused by avian pathogenic Escherichia coli (APEC). However, E. coli strains are very diverse, and not all are pathogenic for poultry. A straightforward scheme for identifying APEC is crucial to better control avian colibacillosis. In this study, we combined high-throughput PCR and a machine learning procedure to identify relevant genetic markers associated with APEC. Markers related to phylogroup, serotype and 66 virulence factors were tested on a large number of E. coli strains isolated from environmental, faecal or colibacillosis lesion samples in 80 broiler flocks. Nine classification methods and a machine learning procedure were used to differentiate 170 strains presumed non-virulent (obtained from farm environments) from 203 strains presumed virulent (obtained from colibacillosis cases on chicken farms) and to develop a prediction model to evaluate the pathogenicity of isolates. The model was then validated on 14 isolates using a chick embryo lethality assay. The selected and validated model based on the bootstrap aggregating tree method relied on a scheme of 13 positive or negative markers associated with phylogroups (arpA), H4 antigen and virulence markers (aec4, ETT2.2, frzorf4,fyuA, iha, ireA, iroN, iutA1, papA, tsh, and vat). It had a specificity of 84 % and a sensitivity of 85 %, and was implemented as an online tool. Our scheme offers an easy evaluation of the virulence of avian E. coli isolates on the basis of the presence/absence of these 13 genetic markers, allowing for better control of avian colibacillosis.


Escherichia coli Infections , Poultry Diseases , Animals , Chick Embryo , Chickens/microbiology , Escherichia coli , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Genetic Markers , Polymerase Chain Reaction/veterinary , Poultry/genetics , Poultry Diseases/diagnosis , Poultry Diseases/microbiology , Virulence/genetics , Virulence Factors/genetics
15.
Avian Pathol ; 51(5): 445-456, 2022 Oct.
Article En | MEDLINE | ID: mdl-35634647

Avian pathogenic Escherichia coli (APEC) cause extra-intestinal infections called colibacillosis, which is the dominant bacterial disease in broilers. To date, given the diversity of APEC strains and the need for an acceptable level of protection in day-old chicks, no satisfactory commercial vaccine is available. As part of a French nationwide project, we selected three representative strains among several hundred APEC that cause colibacillosis disease. We first performed experiments to develop colibacillosis in vivo models, using an inoculum of 3 × 107 CFU of each E. coli strain per chick. Two APEC strains (19-381 and 19-383-M1) were found to be highly virulent for day-old chicks, whereas the third strain (19-385-M1) induced no mortality nor morbidity.We then produced an autogenous vaccine using the (Llyod, 1982; MaCQueen, 1967) 19-381 and 19-383-M1 APEC strains and a passive immunization trial was undertaken. Specific-pathogen-free Leghorn hens were vaccinated twice 2 weeks apart, the control group receiving a saline solution. The vaccinated and control hens exhibited no clinical signs, and egg production and fertility of both groups were similar. Fertile eggs were collected for 2 weeks after the second vaccination and chicks were obtained. After challenge with each APEC (19-381 and 19-383-M1), chicks appeared to be partially protected from infection with the 19-383-M1 strain, with 40% mortality compared with 80% for the non-vaccinated chicks. No protection was found when the chicks were challenged with the 19-381 strain. Now, further work is needed to consider some aspects: severity of the pathogen challenge model, persistence of the protection, number of APEC strains in the autogenous vaccine, choice of adjuvants, and heterologous protection by the vaccine made from strain 19-383-M1.RESEARCH HIGHLIGHTS Three APEC strains were characterized and selected to develop in vivo models of colibacillosis.A bivalent autogenous vaccine was produced and a passive immunization trial was carried out.Protection of chicks was demonstrated when challenged with the 19-383-M1 APEC strain (homologous challenge).Further work is needed in particular to evaluate the protection against heterologous challenge.


Autovaccines , Escherichia coli Infections , Escherichia coli Vaccines , Poultry Diseases , Animals , Chickens/microbiology , Escherichia coli , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Female , Immunization, Passive/veterinary , Ovum , Poultry Diseases/microbiology
16.
Front Vet Sci ; 9: 871549, 2022.
Article En | MEDLINE | ID: mdl-35558891

Immunosuppression in poultry production is a recurrent problem worldwide, and one of the major viral immunosuppressive agents is Infectious Bursal Disease Virus (IBDV). IBDV infections are mostly controlled by using live-attenuated vaccines. Live-attenuated Infectious Bursal Disease (IBD) vaccine candidates are classified as "mild," "intermediate," "intermediate-plus" or "hot" based on their residual immunosuppressive properties. The immunosuppression protocol described by the European Pharmacopoeia (Ph. Eur.) uses a lethal Newcastle Disease Virus (NDV) infectious challenge to measure the interference of a given IBDV vaccine candidate on NDV vaccine immune response. A Ph. Eur.-derived protocol was thus implemented to quantify immunosuppression induced by one mild, two intermediate, and four intermediate-plus live-attenuated IBD vaccines as well as a pathogenic viral strain. This protocol confirmed the respective immunosuppressive properties of those vaccines and virus. In the search for a more ethical alternative to Ph. Eur.-based protocols, two strategies were explored. First, ex vivo viral replication of those vaccines and the pathogenic strain in stimulated chicken primary bursal cells was assessed. Replication levels were not strictly correlated to immunosuppression observed in vivo. Second, changes in blood leukocyte counts in chicks were monitored using a Ph. Eur. - type protocol prior to lethal NDV challenge. In case of intermediate-plus vaccines, the drop in B cells counts was more severe. Counting blood B cells may thus represent a highly quantitative, faster, and ethical strategy than NDV challenge to assess the immunosuppression induced in chickens by live-attenuated IBD vaccines.

17.
Vet Anim Sci ; 14: 100217, 2021 Dec.
Article En | MEDLINE | ID: mdl-34825108

We evaluated the impact of the administration of two Escherichia coli probiotic strains (ED1a and Nissle 1917) to pigs on the gut carriage or shedding of extended-spectrum beta-lactamase-producing E. coli. The probiotics were given to four sows from 12 days before farrowing to the weaning day, and to the 23 piglets (infected treated group (IPro)) from birth to the age of 49 days. Four other sows and their 24 piglets (infected non-treated group (INT)) did not receive the probiotics. IPro and INT piglets (n = 47) were orally inoculated with the strain E. coli 17-348F-RifR carrying the bla CTX-M-1 gene and resistant to rifampicin. Cefotaxime-resistant (CTXR) E. coli and rifampicin-resistant (RifR) E. coli were cultured and excretion of probiotics was studied using PCR on individual faecal and post-mortem samples, and from manure collected after the challenge with resistant E. coli. CTXR and RifR E . coli isolates were characterized to detect transfer of the bla CTX-M-1 to other strains.. Overall, there was no significant reduction in faecal excretion of CTXR and RifR E. coli in IPro pigs compared with INT pigs, although the CTXR and RifR E. coli titres were slightly, but significantly lower in the colon, caecum and rectum at post mortem. Excretion of the probiotics decreased with age, but Nissle 1917 was detected in most pigs at post-mortem. No transfer of the bla CTX-M-1 gene to probiotic and other E. coli strains was detected. In conclusion, in our experimental conditions, the used probiotics did not reduce shedding of the challenge strain.

18.
Animals (Basel) ; 11(11)2021 Nov 05.
Article En | MEDLINE | ID: mdl-34827892

Lameness and foot disorders are major health and welfare issues in intensive swine production systems. They are exacerbated when sows are housed in large groups on slatted concrete floors during gestation. Our study aimed to assess the effect of rubber mats in the lying area of the gestation pen on lameness and leg health in gestating sows housed in large pens in commercial conditions. The study was conducted on three commercial farms over two successive gestations. A total of 582 Large White × Landrace sows, housed in 10 static groups, were enrolled: 5 groups in pens with rubber mats and 5 groups on slatted concrete floors. Lameness, bursitis, leg injuries, claw growth defects and claw lesions were measured at the beginning, middle and end of each gestation period. The rubber mats decreased the risk of suffering from bursitis, but had no effect on the risk of lameness, leg injuries, claw growth defects or claw lesions. Sows housed on rubber mats were heavily soiled compared with those on slatted concrete floors because the mats were not perforated for slurry evacuation. Locomotion disorders and foot lesions remained prevalent despite the rubber mats in the lying area of the gestation pens, but adding rubber mats in service rooms and farrowing crates may produce better results.

19.
Front Microbiol ; 12: 678563, 2021.
Article En | MEDLINE | ID: mdl-34177862

The avibirnavirus infectious bursal disease virus (IBDV) is responsible for a highly contagious and sometimes lethal disease of chickens (Gallus gallus). IBDV genetic variation is well-described for both field and live-attenuated vaccine strains, however, the dynamics and selection pressures behind this genetic evolution remain poorly documented. Here, genetically homogeneous virus stocks were generated using reverse genetics for a very virulent strain, rvv, and a vaccine-related strain, rCu-1. These viruses were serially passaged at controlled multiplicities of infection in several biological systems, including primary chickens B cells, the main cell type targeted by IBDV in vivo. Passages were also performed in the absence or presence of a strong selective pressure using the antiviral nucleoside analog 7-deaza-2'-C-methyladenosine (7DMA). Next Generation Sequencing (NGS) of viral genomes after the last passage in each biological system revealed that (i) a higher viral diversity was generated in segment A than in segment B, regardless 7DMA treatment and viral strain, (ii) diversity in segment B was increased by 7DMA treatment in both viruses, (iii) passaging of IBDV in primary chicken B cells, regardless of 7DMA treatment, did not select cell-culture adapted variants of rvv, preserving its capsid protein (VP2) properties, (iv) mutations in coding and non-coding regions of rCu-1 segment A could potentially associate to higher viral fitness, and (v) a specific selection, upon 7DMA addition, of a Thr329Ala substitution occurred in the viral polymerase VP1. The latter change, together with Ala270Thr change in VP2, proved to be associated with viral attenuation in vivo. These results identify genome sequences that are important for IBDV evolution in response to selection pressures. Such information will help tailor better strategies for controlling IBDV infection in chickens.

20.
Sci Rep ; 11(1): 2098, 2021 01 22.
Article En | MEDLINE | ID: mdl-33483559

African swine fever (ASF) has affected Romania since July 2017, with considerable economic and social consequences, despite the implementation of control measures mainly based on stamping out of infected pig populations. On the basis of the 2973 cumulative recorded cases up to September 2019 among wild boars and domestic pigs, analysis of the epidemiological characteristics could help to identify the factors favoring the persistence and spread of ASF. A statistical framework, based on a random forest methodology, was therefore developed to assess the spatiotemporal features of the epidemics and their relationships with environmental, human, and agricultural factors. The landscape of Romania was associated with the infection dynamics, particularly concerning forested and wetland areas. Waterways were also identified as a pivotal factor, raising questions about possible waterborne transmission since these waterways are often used as a water supply for backyard holdings. However, human activity was clearly identified as the main risk factor for the spread of ASF. Although the situation in Romania cannot be directly transposed to intensive pig farming countries, the findings of this study highlight the need for strict biosecurity measures on farms, and during transportation, to avoid ASF transmission at large geographic and temporal scales.


African Swine Fever/epidemiology , Disease Outbreaks , Models, Statistical , African Swine Fever/transmission , Animals , Cluster Analysis , Farms , Risk Factors , Romania/epidemiology , Swine
...