Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 14 de 14
1.
J Med Genet ; 60(6): 620-626, 2023 06.
Article En | MEDLINE | ID: mdl-36368868

BACKGROUND: Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. METHODS: We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. RESULTS: We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. CONCLUSIONS: Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity.


Cleft Lip , Cleft Palate , Goldenhar Syndrome , Humans , Animals , Goldenhar Syndrome/genetics , Zebrafish/genetics , DNA Copy Number Variations/genetics , Otx Transcription Factors/genetics
2.
Eur J Med Genet ; 65(10): 104574, 2022 Oct.
Article En | MEDLINE | ID: mdl-35918037

Disruption of any of the ocular development steps can result in ocular defects such as microphthalmia, coloboma and anterior segment dysgeneses including aniridia and cataract. All of these anomalies can be isolated or seen in association with each other. Except for aniridia (almost exclusively due to PAX6 mutations), most of these congenital ocular malformations are related to a wide genetic heterogeneity, as hundreds of genes are implied in ocular development. Here we describe a patient presenting with bilateral microphthalmia, congenital cataract, corneal dystrophy and iris hypoplasia, associated with extra-ocular features, who underwent an analysis of 119 ocular development related genes. Genetic testing revealed the presence of two truncating variants in the EPHA2 gene. While EPHA2 mutations are mainly known to be responsible for isolated dominant congenital cataract, we report here the first case of complex anterior segment dysgenesis caused by a biallelic EPHA2 mutation. This gene should be screened in case of aniridia with a negative PAX6 testing, as the ocular features of our patient clearly mimic those of PAX6 mutated patients. This observation enlarges the phenotype associated with EPHA2 variations and rise the insight of a possible PAX6-EPHA2 interaction that needs further investigations. Moreover, despite a great variability in ocular and extra-ocular phenotypes, mutations type and inheritance pattern, a possible genotype-phenotype correlation can also be drawn for this gene.


Aniridia , Cataract , Microphthalmos , Aniridia/genetics , Cataract/congenital , Cataract/genetics , Eye Abnormalities , Eye Proteins/genetics , Homeodomain Proteins/genetics , Humans , Iris , Microphthalmos/complications , Microphthalmos/genetics , Mutation , PAX6 Transcription Factor/genetics , Paired Box Transcription Factors/genetics , Pedigree , Repressor Proteins/genetics
3.
Clin Genet ; 101(5-6): 494-506, 2022 05.
Article En | MEDLINE | ID: mdl-35170016

Peters' anomaly (PA) is a rare anterior segment dysgenesis characterized by central corneal opacity and irido-lenticulo-corneal adhesions. Several genes are involved in syndromic or isolated PA (B3GLCT, PAX6, PITX3, FOXE3, CYP1B1). Some copy number variations (CNVs) have also been occasionally reported. Despite this genetic heterogeneity, most of patients remain without genetic diagnosis. We retrieved a cohort of 95 individuals with PA and performed genotyping using a combination of comparative genomic hybridization, whole genome, exome and targeted sequencing of 119 genes associated with ocular development anomalies. Causative genetic defects involving 12 genes and CNVs were identified for 1/3 of patients. Unsurprisingly, B3GLCT and PAX6 were the most frequently implicated genes, respectively in syndromic and isolated PA. Unexpectedly, the third gene involved in our cohort was SOX2, the major gene of micro-anophthalmia. Four unrelated patients with PA (isolated or with microphthalmia) were carrying pathogenic variants in this gene that was never associated with PA before. Here we described the largest cohort of PA patients ever reported. The genetic bases of PA are still to be explored as genetic diagnosis was unavailable for 2/3 of patients. Nevertheless, we showed here for the first time the involvement of SOX2 in PA, offering new evidence for its role in corneal transparency and anterior segment development.


Corneal Opacity , Eye Abnormalities , Anterior Eye Segment/abnormalities , Comparative Genomic Hybridization , Corneal Opacity/diagnosis , Corneal Opacity/genetics , Corneal Opacity/pathology , DNA Copy Number Variations/genetics , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Humans , Mutation/genetics , SOXB1 Transcription Factors/genetics
4.
Clin Case Rep ; 3(9): 757-61, 2015 Sep.
Article En | MEDLINE | ID: mdl-26401282

We report on a phenotypically normal 41-year-old azoospermic man with a 45 chromosomes karyotype including one normal chromosome 21, one normal chromosome 22, and a der(22)ins(22;21). Array CGH showed a 1.8 Mb terminal deletion of bands 21pter to 21q21.1 and a 341 kb terminal deletion on band 21q22.3.

5.
Am J Med Genet A ; 164A(8): 1965-75, 2014 Aug.
Article En | MEDLINE | ID: mdl-24782328

Syndromic obesity is defined by the association of obesity with one or more feature(s) including developmental delay, dysmorphic traits, and/or congenital malformations. Over 25 syndromic forms of obesity have been identified. However, most cases remain of unknown etiology. The aim of this study was to identify new candidate loci associated with syndromic obesity to find new candidate genes and to better understand molecular mechanisms involved in this pathology. We performed oligonucleotide microarray-based comparative genomic hybridization in a cohort of 100 children presenting with syndromic obesity of unknown etiology, after exhaustive clinical, biological, and molecular studies. Chromosomal copy number variations were detected in 42% of the children in our cohort, with 23% of patients with potentially pathogenic copy number variants. Our results support that chromosomal rearrangements are frequently associated with syndromic obesity with a variety of contributory genes having relevance to either obesity or developmental delay. A list of inherited or apparently de novo duplications and deletions including their enclosed genes and not previously linked to syndromic obesity was established. Proteins encoded by several of these genes are involved in lipid metabolism (ACOXL, MSMO1, MVD, and PDZK1) linked with nervous system function (BDH1 and LINGO2), neutral lipid storage (PLIN2), energy homeostasis and metabolic processes (CDH13, CNTNAP2, CPPED1, NDUFA4, PTGS2, and SOCS6).


Obesity/diagnosis , Obesity/genetics , Phenotype , Quantitative Trait Loci , Child , Child, Preschool , Chromosome Aberrations , Chromosome Disorders/diagnosis , Chromosome Disorders/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Female , Gene Expression , Genetic Association Studies , Genome-Wide Association Study , Genomics , Humans , Infant , Male , Syndrome
6.
Eur J Med Genet ; 57(1): 47-53, 2014 Jan.
Article En | MEDLINE | ID: mdl-24275544

Pure distal monosomy of the long arm of chromosome 10 is a rare cytogenetic abnormality. The location and size of the deletions described in this region are variable. Nevertheless, the patients share characteristic facial appearance, variable cognitive impairment and neurobehavioral manifestations. A Minimal Critical Region corresponding to a 600 kb Smallest Region of deletion Overlap (SRO) has been proposed. In this report, we describe four patients with a distal 10q26 deletion, who displayed attention-deficit/hyperactivity disorders (ADHD). One of them had a marked behavioral profile and relatively preserved cognitive functions. Interestingly, the SRO was not included in the deleted segment of this patient suggesting that this deletion could contain candidate genes involved in the control of neurobehavioral functions. One of these candidates was the CALY gene, known for its association with ADHD patients and whose expression level was shown to be correlated with neurobehavioral disturbances in varying animal models. This report emphasizes the importance of the behavioral problems as a cardinal feature of the 10q microdeletion syndrome. Haploinsufficiency of CALY could play a crucial role in the development of the behavioral troubles within these patients.


Chromosome Deletion , Disruptive, Impulse Control, and Conduct Disorders/diagnosis , Intellectual Disability/diagnosis , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/genetics , Child , Chromosomes, Human, Pair 10 , Comparative Genomic Hybridization , Disruptive, Impulse Control, and Conduct Disorders/genetics , Female , Genetic Association Studies , Humans , Intellectual Disability/genetics
7.
Nature ; 431(7011): 946-57, 2004 Oct 21.
Article En | MEDLINE | ID: mdl-15496914

Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.


Chromosomes/genetics , Fishes/genetics , Gene Duplication , Genome , Vertebrates/genetics , Animals , Base Composition , Chromosomes, Human/genetics , Conserved Sequence/genetics , Evolution, Molecular , Genes/genetics , Humans , Karyotyping , Mammals/genetics , Models, Genetic , Molecular Sequence Data , Physical Chromosome Mapping , Proteome , Sequence Analysis, DNA , Synteny/genetics , Urochordata/genetics
8.
Gene ; 336(2): 175-83, 2004 Jul 21.
Article En | MEDLINE | ID: mdl-15246529

Because of its unusual high degree of compaction and paucity of repetitive sequences, the genome of the smooth pufferfish Tetraodon nigroviridis is the subject of a well-advanced sequencing project. An astonishing diversity of transposable elements not found in the human and the mouse has been observed in the genome of T. nigroviridis. Due to the difficulty of assembling repeat-rich regions, the whole genome shotgun sequencing approach will probably fail to reveal the general organisation of this compact vertebrate genome. Therefore, in order to gain new insights into the global distribution pattern of repeated DNA in the genome of T. nigroviridis, we have reconstructed partial/complete repetitive sequences from data generated by the genome project and performed double-colour fluorescent in situ hybridization (FISH) analysis for representatives of three major categories of repeated sequences including two minisatellites (ms100 and ms104), two DNA transposons (Tol2 and Buffy1) and two non-long terminal repeat (LTR) retrotransposons (Rex3 and Babar). We show that DNA transposons and retroelements very frequently colocalize with minisatellites and mostly accumulate within heterochromatic regions. These results, which have not been reported so far for the fugu Takifugu rubripes, show that repeated elements are generally excluded from gene-rich regions in T. nigroviridis and underline the extreme degree of compartmentalization of this compact genome. The genome organization of the pufferfish is clearly different from that observed in humans, where repeated sequences make up an important fraction of euchromatic DNA, and is more similar to that observed in the fruit fly Drosophila melanogaster.


DNA Transposable Elements/genetics , Genome , Heterochromatin/genetics , Minisatellite Repeats/genetics , Tetraodontiformes/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA/chemistry , DNA/genetics , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Retroelements/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Transposases/genetics
10.
Genome Res ; 13(7): 1686-95, 2003 Jul.
Article En | MEDLINE | ID: mdl-12805276

The fish retrotransposable element Zebulon encodes a reverse transcriptase and a carboxy-terminal restriction enzyme-like endonuclease, and is related phylogenetically to site-specific non-LTR retrotransposons from nematodes. Zebulon was detected in the pufferfishes Tetraodon nigroviridis and Takifugu rubripes, as well as in the zebrafish Danio rerio. Structural analysis suggested that Zebulon, in contrast to most non-LTR retrotransposons, might be able to retrotranspose as a partial tandem array. Zebulon was active relatively recently in the compact genome of T. nigroviridis, in which it contributed to the extension of intergenic and intronic sequences, and possibly to the formation of genomic rearrangements. Accumulation of Zebulon together with other retrotransposons was observed in some heterochromatic chromosomal regions of the genome of T. nigroviridis that might serve as reservoirs for active elements. Hence, pufferfish compact genomes are not evolutionarily inert and contain active retrotransposons, suggesting the presence of mechanisms allowing accumulation of retrotransposable elements in heterochromatin, but minimizing their impact on euchromatic regions. Homologous recombination between partial tandem sequences eliminating active copies of Zebulon and reducing the size of insertions in intronic and intragenic regions might represent such a mechanism.


Genome , Retroelements/genetics , Tandem Repeat Sequences/genetics , Terminal Repeat Sequences/genetics , Tetraodontiformes/genetics , Amino Acid Sequence , Animals , Base Sequence , Chromosome Mapping , Consensus Sequence/genetics , DNA, Intergenic/genetics , Gene Rearrangement/genetics , Heterochromatin/genetics , Introns/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed/genetics , Nematoda/genetics , Phylogeny , Species Specificity
11.
DNA Seq ; 14(1): 1-13, 2003 Feb.
Article En | MEDLINE | ID: mdl-12751327

We have sequenced and analysed a 148 kb genomic region of Tetraodon nigroviridis, a teleost fish with a compact genome. Several genes were identified by comparison with genomic or transcript sequences of other species, informatic prediction and screening of a cDNA library. As expected for a compact genome, sizes of the identified genes and introns are very small, and intergenic distances are short. Among identified genes, three code for amylases. As in mammals, these genes are linked, but they are found in a small region of less than 11 kb. These results represent the first description of a genomic sequence larger than 100 kb in this species. Synteny with the human genome is restricted to three regions corresponding to human 1p32.3, 1p13.3 and 1p21.1.


Amylases/genetics , Tetraodontiformes/genetics , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Human, Pair 1/genetics , Cloning, Molecular , DNA/chemistry , DNA/genetics , DNA, Complementary/chemistry , DNA, Complementary/genetics , Humans , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Software , Synteny
12.
Genetics ; 161(1): 259-67, 2002 May.
Article En | MEDLINE | ID: mdl-12019239

The microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5' exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio. Fish proteins MITF-m and MITF-b correspond at both the structural and the expression levels to one particular bird/mammalian MITF isoform. In the teleost lineage subfunctionalization of mitf genes after duplication at least 100 million years ago is associated with the degeneration of alternative exons and, probably, regulatory elements and promoters. For example, a remnant of the first exon specific for MITF-m is detected within the pufferfish gene encoding MITF-b. Retracing the evolutionary history of mitf genes in vertebrates uncovered the differential recruitment of new introns specific for either the teleost or the bird/mammalian lineage.


Alternative Splicing , Cyprinodontiformes/genetics , DNA-Binding Proteins/genetics , Exons , Gene Duplication , Tetraodontiformes/genetics , Transcription Factors/genetics , Amino Acid Sequence , Animals , Evolution, Molecular , Microphthalmia-Associated Transcription Factor , Molecular Sequence Data , Phylogeny , Sequence Alignment
13.
Genomics ; 79(2): 241-8, 2002 Feb.
Article En | MEDLINE | ID: mdl-11829494

T-cell specific receptors (TCR) are present in all groups] from the jawed vertebrates to the mammals. In teleosts, however, the genes encoding the gamma- and delta-chains have not yet been found, the alpha- and beta-chains have been characterized mainly at the expression level, and genomic organization of these loci remains largely unknown. Here we describe both the genomic organization of the TCR alpha/delta locus in Tetraodon nigroviridis and the transcription of TCRA and TCRD. The TCR alpha/delta locus consists of 13 V alpha/delta segments, a Calpha gene, and 12 Jalpha segments, followed by a Cdelta gene, two Jdelta segments, and several Ddelta segments. However, the genomic organization found in this teleost differs significantly from that which has been observed in mammals and birds: a common set of V segments is used to generate either an alpha- or a delta-chain by genomic inversion, and the size of the locus is small in this vertebrate.


Genes, T-Cell Receptor alpha/genetics , Genes, T-Cell Receptor delta/genetics , Tetraodontiformes/genetics , Amino Acid Sequence , Animals , Base Sequence , Chromosomes, Artificial, Bacterial , Conserved Sequence , DNA , Evolution, Molecular , Flounder/genetics , Gene Library , Humans , Molecular Sequence Data , Polymorphism, Genetic , Repetitive Sequences, Nucleic Acid , Sequence Homology, Amino Acid
14.
J Biol Chem ; 277(15): 13016-28, 2002 Apr 12.
Article En | MEDLINE | ID: mdl-11801592

We previously found that mutants of conserved aspartate residues of sarcoplasmic reticulum Ca(2+)-ATPase in the cytosolic loop, connecting transmembrane segments M6 and M7 (L6-7 loop), exhibit a strongly reduced sensitivity toward Ca(2+) activation of the transport process. In this study, yeast membranes, expressing wild type and mutant Ca(2+)-ATPases, were reacted with Cr small middle dotATP and tested for their ability to occlude (45)Ca(2+) by HPLC analysis, after cation resin and C(12)E(8) treatment. We found that the D813A/D818A mutant that displays markedly low calcium affinity was capable of occluding Ca(2+) to the same extent as wild type ATPase. Using NMR and mass spectrometry we have analyzed the conformational properties of the synthetic L6-7 loop and demonstrated the formation of specific 1:1 cation complexes of the peptide with calcium and lanthanum. All three aspartate Asp(813)/Asp(815)/Asp(818) were required to coordinate the trivalent lanthanide ion. Overall these observations suggest a dual function of the loop: in addition to mediating contact between the intramembranous Ca(2+)-binding sites and the cytosolic phosphorylation site (Zhang, Z., Lewis, D., Sumbilla, C., Inesi G., and Toyoshima, C. (2001) J. Biol. Chem. 276, 15232-15239), the L6-7 loop, in a preceding step, participates in the formation of an entrance port, before subsequent high affinity binding of Ca(2+) inside the membrane.


Calcium-Transporting ATPases/metabolism , Calcium/metabolism , Cytoplasm/metabolism , Amino Acid Sequence , Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/genetics , Ion Transport , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Spectrometry, Mass, Electrospray Ionization
...