Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Cancer Discov ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819218

ABSTRACT

Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs.

2.
Nature ; 629(8014): 1149-1157, 2024 May.
Article in English | MEDLINE | ID: mdl-38720070

ABSTRACT

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Subject(s)
Chromatin , Epigenesis, Genetic , Genotype , Mutation , Single-Cell Analysis , Animals , Female , Humans , Male , Mice , Antigens, CD34/metabolism , Cell Differentiation/genetics , Chromatin/chemistry , Chromatin/genetics , Chromatin/metabolism , Epigenesis, Genetic/genetics , Epigenome/genetics , Genome, Mitochondrial/genetics , Genotyping Techniques , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Inflammation/genetics , Inflammation/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Membrane Proteins/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , RNA/genetics , Clone Cells/metabolism
3.
Leukemia ; 38(7): 1501-1510, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467769

ABSTRACT

Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogeneous phenotypes.


Subject(s)
Clonal Evolution , DNA Methylation , Leukemia, Myeloid, Acute , Mutation , Nucleophosmin , Phenotype , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Prognosis , Clonal Evolution/genetics , Male , Genetic Heterogeneity , Female , Middle Aged , Adult , Aged
4.
Leukemia ; 38(2): 291-301, 2024 02.
Article in English | MEDLINE | ID: mdl-38182819

ABSTRACT

Internal tandem duplication mutations in fms-like tyrosine kinase 3 (FLT3-ITD) are recurrent in acute myeloid leukemia (AML) and increase the risk of relapse. Clinical responses to FLT3 inhibitors (FLT3i) include myeloid differentiation of the FLT3-ITD clone in nearly half of patients through an unknown mechanism. We identified enhancer of zeste homolog 2 (EZH2), a component of polycomb repressive complex 2 (PRC2), as a mediator of this effect using a proteomic-based screen. FLT3i downregulated EZH2 protein expression and PRC2 activity on H3K27me3. FLT3-ITD and loss-of-function mutations in EZH2 are mutually exclusive in human AML. We demonstrated that FLT3i increase myeloid maturation with reduced stem/progenitor cell populations in murine Flt3-ITD AML. Combining EZH1/2 inhibitors with FLT3i increased terminal maturation of leukemic cells and reduced leukemic burden. Our data suggest that reduced EZH2 activity following FLT3 inhibition promotes myeloid differentiation of FLT3-ITD leukemic cells, providing a mechanistic explanation for the clinical observations. These results demonstrate that in addition to its known cell survival and proliferation signaling, FLT3-ITD has a second, previously undefined function to maintain a myeloid stem/progenitor cell state through modulation of PRC2 activity. Our findings support exploring EZH1/2 inhibitors as therapy for FLT3-ITD AML.


Subject(s)
Leukemia, Myeloid, Acute , Protein-Tyrosine Kinases , Humans , Animals , Mice , Protein-Tyrosine Kinases/genetics , Polycomb Repressive Complex 2/genetics , Proteomics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/therapeutic use
5.
Cancer Discov ; 14(5): 737-751, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38230747

ABSTRACT

Gain-of-function mutations activating JAK/STAT signaling are seen in the majority of patients with myeloproliferative neoplasms (MPN), most commonly JAK2V617F. Although clinically approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic therapy. We hypothesized this is due to limitations of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a combined Dre-rox/Cre-lox dual-recombinase system. Jak2V617F deletion abrogates MPN features, induces depletion of mutant-specific hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition, including when cooccurring with somatic Tet2 loss. Our data suggest JAK2V617F represents the best therapeutic target in MPNs and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo. SIGNIFICANCE: Current JAK inhibitors to treat myeloproliferative neoplasms are ineffective at eradicating mutant cells. We developed an endogenously expressed Jak2V617F dual-recombinase knock-in/knock-out model to investigate Jak2V617F oncogenic reversion in vivo. Jak2V617F deletion abrogates MPN features and depletes disease-sustaining MPN stem cells, suggesting improved Jak2V617F targeting offers the potential for greater therapeutic efficacy. See related commentary by Celik and Challen, p. 701. This article is featured in Selected Articles from This Issue, p. 695.


Subject(s)
Janus Kinase 2 , Myeloproliferative Disorders , Animals , Humans , Mice , Disease Models, Animal , Hematopoietic Stem Cells/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/drug therapy , Signal Transduction
6.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014231

ABSTRACT

Single-cell genomics has the potential to map cell states and their dynamics in an unbiased way in response to perturbations like disease. However, elucidating the cell-state transitions from healthy to disease requires analyzing data from perturbed samples jointly with unperturbed reference samples. Existing methods for integrating and jointly visualizing single-cell datasets from distinct contexts tend to remove key biological differences or do not correctly harmonize shared mechanisms. We present Decipher, a model that combines variational autoencoders with deep exponential families to reconstruct derailed trajectories (https://github.com/azizilab/decipher). Decipher jointly represents normal and perturbed single-cell RNA-seq datasets, revealing shared and disrupted dynamics. It further introduces a novel approach to visualize data, without the need for methods such as UMAP or TSNE. We demonstrate Decipher on data from acute myeloid leukemia patient bone marrow specimens, showing that it successfully characterizes the divergence from normal hematopoiesis and identifies transcriptional programs that become disrupted in each patient when they acquire NPM1 driver mutations.

7.
Res Sq ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986825

ABSTRACT

Acute myeloid leukemia (AML) has a poor prognosis and a heterogeneous mutation landscape. Although common mutations are well-studied, little research has characterized how the sequence of mutations relates to clinical features. Using published, single-cell DNA sequencing data from three institutions, we compared clonal evolution patterns in AML to patient characteristics, disease phenotype, and outcomes. Mutation trees, which represent the order of select mutations, were created for 207 patients from targeted panel sequencing data using 1 639 162 cells, 823 mutations, and 275 samples. In 224 distinct orderings of mutated genes, mutations related to DNA methylation typically preceded those related to cell signaling, but signaling-first cases did occur, and had higher peripheral cell counts, increased signaling mutation homozygosity, and younger patient age. Serial sample analysis suggested that NPM1 and DNA methylation mutations provide an advantage to signaling mutations in AML. Interestingly, WT1 mutation evolution shared features with signaling mutations, such as WT1-early being proliferative and occurring in younger individuals, trends that remained in multivariable regression. Some mutation orderings had a worse prognosis, but this was mediated by unfavorable mutations, not mutation order. These findings add a dimension to the mutation landscape of AML, identifying uncommon patterns of leukemogenesis and shedding light on heterogenous phenotypes.

8.
Sci Adv ; 9(38): eadg0488, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37729414

ABSTRACT

Measurable residual disease (MRD), defined as the population of cancer cells that persist following therapy, serves as the critical reservoir for disease relapse in acute myeloid leukemia and other malignancies. Understanding the biology enabling MRD clones to resist therapy is necessary to guide the development of more effective curative treatments. Discriminating between residual leukemic clones, preleukemic clones, and normal precursors remains a challenge with current MRD tools. Here, we developed a single-cell MRD (scMRD) assay by combining flow cytometric enrichment of the targeted precursor/blast population with integrated single-cell DNA sequencing and immunophenotyping. Our scMRD assay shows high sensitivity of approximately 0.01%, deconvolutes clonal architecture, and provides clone-specific immunophenotypic data. In summary, our scMRD assay enhances MRD detection and simultaneously illuminates the clonal architecture of clonal hematopoiesis/preleukemic and leukemic cells surviving acute myeloid leukemia therapy.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Biological Assay , Flow Cytometry , Genotype , Immunophenotyping
9.
J Exp Med ; 220(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37615936

ABSTRACT

Clonal hematopoiesis (CH) is defined as clonal expansion of mutant hematopoietic stem cells absent diagnosis of a hematologic malignancy. Presence of CH in solid tumor patients, including colon cancer, correlates with shorter survival. We hypothesized that bone marrow-derived cells with heterozygous loss-of-function mutations of DNMT3A, the most common genetic alteration in CH, contribute to the pathogenesis of colon cancer. In a mouse model that combines colitis-associated colon cancer (CAC) with experimental CH driven by Dnmt3a+/Δ, we found higher tumor penetrance and increased tumor burden compared with controls. Histopathological analysis revealed accentuated colonic epithelium injury, dysplasia, and adenocarcinoma formation. Transcriptome profiling of colon tumors identified enrichment of gene signatures associated with carcinogenesis, including angiogenesis. Treatment with the angiogenesis inhibitor axitinib eliminated the colon tumor-promoting effect of experimental CH driven by Dnmt3a haploinsufficiency and rebalanced hematopoiesis. This study provides conceptually novel insights into non-tumor-cell-autonomous effects of hematopoietic alterations on colon carcinogenesis and identifies potential therapeutic strategies.


Subject(s)
Colitis-Associated Neoplasms , Colonic Neoplasms , Animals , Mice , Carcinogenesis , Colonic Neoplasms/genetics , Loss of Heterozygosity , Mutation
10.
Blood ; 141(20): 2508-2519, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36800567

ABSTRACT

Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Primary Myelofibrosis , Humans , Mice , Animals , Primary Myelofibrosis/pathology , Myeloproliferative Disorders/genetics , Signal Transduction , Neoplasms/complications , Cytokines/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism
11.
Am J Hematol ; 98(1): 79-89, 2023 01.
Article in English | MEDLINE | ID: mdl-36251406

ABSTRACT

Measurable residual disease (MRD) is a powerful prognostic factor in acute myeloid leukemia (AML). However, pre-treatment molecular predictors of immunophenotypic MRD clearance remain unclear. We analyzed a dataset of 211 patients with pre-treatment next-generation sequencing who received induction chemotherapy and had MRD assessed by serial immunophenotypic monitoring after induction, subsequent therapy, and allogeneic stem cell transplant (allo-SCT). Induction chemotherapy led to MRD- remission, MRD+ remission, and persistent disease in 35%, 27%, and 38% of patients, respectively. With subsequent therapy, 34% of patients with MRD+ and 26% of patients with persistent disease converted to MRD-. Mutations in CEBPA, NRAS, KRAS, and NPM1 predicted high rates of MRD- remission, while mutations in TP53, SF3B1, ASXL1, and RUNX1 and karyotypic abnormalities including inv (3), monosomy 5 or 7 predicted low rates of MRD- remission. Patients with fewer individual clones were more likely to achieve MRD- remission. Among 132 patients who underwent allo-SCT, outcomes were favorable whether patients achieved early MRD- after induction or later MRD- after subsequent therapy prior to allo-SCT. As MRD conversion with chemotherapy prior to allo-SCT is rarely achieved in patients with specific baseline mutational patterns and high clone numbers, upfront inclusion of these patients into clinical trials should be considered.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Stem Cell Transplantation , Remission Induction , Transplantation, Homologous , Neoplasm, Residual/genetics
12.
Nat Protoc ; 16(10): 4692-4721, 2021 10.
Article in English | MEDLINE | ID: mdl-34462595

ABSTRACT

Human tissue samples represent an invaluable source of information for the analysis of disease-specific cellular alterations and their variation between different pathologies. In cancer research, advancing a comprehensive understanding of the unique characteristics of individual tumor types and their microenvironment is of considerable importance for clinical translation. However, investigating human brain tumor tissue is challenging due to the often-limited availability of surgical specimens. Here we describe a multimodule integrated pipeline for the processing of freshly resected human brain tumor tissue and matched blood that enables analysis of the tumor microenvironment, with a particular focus on the tumor immune microenvironment (TIME). The protocol maximizes the information yield from limited tissue and includes both the preservation of bulk tissue, which can be performed within 1 h following surgical resection, as well as tissue dissociation for an in-depth characterization of individual TIME cell populations, which typically takes several hours depending on tissue quantity and further downstream processing. We also describe integrated modules for immunofluorescent staining of sectioned tissue, bulk tissue genomic analysis and fluorescence- or magnetic-activated cell sorting of digested tissue for subsequent culture or transcriptomic analysis by RNA sequencing. Applying this pipeline, we have previously described the overall TIME landscape across different human brain malignancies, and were able to delineate disease-specific alterations of tissue-resident versus recruited macrophage populations. This protocol will enable researchers to use this pipeline to address further research questions regarding the tumor microenvironment.


Subject(s)
Brain Neoplasms , Gene Expression Profiling , Humans , Macrophages , Sequence Analysis, RNA , Tumor Microenvironment
13.
Life Sci Alliance ; 4(9)2021 09.
Article in English | MEDLINE | ID: mdl-34210801

ABSTRACT

BRAF-mutant melanomas are more likely than NRAS-mutant melanomas to arise in anatomical locations protected from chronic sun damage. We hypothesized that this discrepancy in tumor location is a consequence of the differential sensitivity of BRAF and NRAS-mutant melanocytes to ultraviolet light (UV)-mediated carcinogenesis. We tested this hypothesis by comparing the mutagenic consequences of a single neonatal, ultraviolet-AI (UVA; 340-400 nm) or ultraviolet-B (UVB; 280-390 nm) exposure in mouse models heterozygous for mutant Braf or homozygous for mutant Nras Tumor onset was accelerated by UVB, but not UVA, and the resulting melanomas contained recurrent mutations affecting the RING domain of MAP3K1 and Actin-binding domain of Filamin A. Melanomas from UVB-irradiated, Braf-mutant mice averaged twice as many single-nucleotide variants and five times as many dipyrimidine variants than tumors from similarly irradiated Nras-mutant mice. A mutational signature discovered in UVB-accelerated tumors mirrored COSMIC signatures associated with human skin cancer and was more prominent in Braf- than Nras-mutant murine melanomas. These data show that a single UVB exposure yields a greater burden of mutations in murine tumors driven by oncogenic Braf.


Subject(s)
Melanoma/etiology , Monomeric GTP-Binding Proteins/genetics , Mutagenesis/radiation effects , Mutation/radiation effects , Proto-Oncogene Proteins B-raf/genetics , Ultraviolet Rays/adverse effects , Animals , Biomarkers, Tumor , Disease Models, Animal , Disease Susceptibility , Genetic Predisposition to Disease , Melanoma/metabolism , Melanoma/pathology , Mice
14.
Blood ; 137(10): 1377-1391, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32871587

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are the principal natural type I interferon-producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN), and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia. The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here, we characterize patients with AML with pDC expansion (pDC-AML), which we observe in ∼5% of AML cases. pDC-AMLs often possess cross-lineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without pDC expansion and BPDCN. We demonstrate that pDCs are clonally related to, as well as originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1-mutated AML upregulate a pDC transcriptional program, poising the cells toward pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Dendritic Cells/pathology , Leukemia, Myeloid, Acute/genetics , Adult , Aged , Blast Crisis/genetics , Blast Crisis/pathology , Dendritic Cells/metabolism , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Mutation
15.
Nat Cancer ; 2(10): 1086-1101, 2021 10.
Article in English | MEDLINE | ID: mdl-35121879

ABSTRACT

Tumor microenvironment-targeted therapies are emerging as promising treatment options for different cancer types. Tumor-associated macrophages and microglia (TAMs) represent an abundant nonmalignant cell type in brain metastases and have been proposed to modulate metastatic colonization and outgrowth. Here we demonstrate that targeting TAMs at distinct stages of the metastatic cascade using an inhibitor of colony-stimulating factor 1 receptor (CSF1R), BLZ945, in murine breast-to-brain metastasis models leads to antitumor responses in prevention and intervention preclinical trials. However, in established brain metastases, compensatory CSF2Rb-STAT5-mediated pro-inflammatory TAM activation blunted the ultimate efficacy of CSF1R inhibition by inducing neuroinflammation gene signatures in association with wound repair responses that fostered tumor recurrence. Consequently, blockade of CSF1R combined with inhibition of STAT5 signaling via AC4-130 led to sustained tumor control, a normalization of microglial activation states and amelioration of neuronal damage.


Subject(s)
Brain Neoplasms , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Animals , Brain Neoplasms/secondary , Genes, fms , Macrophage Activation , Melanoma , Mice , Receptors, Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , STAT5 Transcription Factor/genetics , Skin Neoplasms , Tumor Microenvironment , Melanoma, Cutaneous Malignant
17.
Nature ; 587(7834): 477-482, 2020 11.
Article in English | MEDLINE | ID: mdl-33116311

ABSTRACT

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Subject(s)
Clone Cells/pathology , DNA Mutational Analysis , Mutation , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Single-Cell Analysis , Cell Separation , Clone Cells/metabolism , Humans , Immunophenotyping
18.
Cancer Discov ; 10(11): 1742-1757, 2020 11.
Article in English | MEDLINE | ID: mdl-32669286

ABSTRACT

We investigated the role of PRMT5 in myeloproliferative neoplasm (MPN) pathogenesis and aimed to elucidate key PRMT5 targets contributing to MPN maintenance. PRMT5 is overexpressed in primary MPN cells, and PRMT5 inhibition potently reduced MPN cell proliferation ex vivo. PRMT5 inhibition was efficacious at reversing elevated hematocrit, leukocytosis, and splenomegaly in a model of JAK2V617F+ polycythemia vera and leukocyte and platelet counts, hepatosplenomegaly, and fibrosis in the MPLW515L model of myelofibrosis. Dual targeting of JAK and PRMT5 was superior to JAK or PRMT5 inhibitor monotherapy, further decreasing elevated counts and extramedullary hematopoiesis in vivo. PRMT5 inhibition reduced expression of E2F targets and altered the methylation status of E2F1 leading to attenuated DNA damage repair, cell-cycle arrest, and increased apoptosis. Our data link PRMT5 to E2F1 regulatory function and MPN cell survival and provide a strong mechanistic rationale for clinical trials of PRMT5 inhibitors in MPN. SIGNIFICANCE: Expression of PRMT5 and E2F targets is increased in JAK2V617F+ MPN. Pharmacologic inhibition of PRMT5 alters the methylation status of E2F1 and shows efficacy in JAK2V617F/MPLW515L MPN models and primary samples. PRMT5 represents a potential novel therapeutic target for MPN, which is now being clinically evaluated.This article is highlighted in the In This Issue feature, p. 1611.


Subject(s)
E2F1 Transcription Factor/metabolism , Gene Regulatory Networks/genetics , Janus Kinase 2/metabolism , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Humans , Methylation , Mutation , Protein-Arginine N-Methyltransferases/metabolism
19.
Sci Transl Med ; 12(552)2020 07 15.
Article in English | MEDLINE | ID: mdl-32669424

ABSTRACT

Tumor-associated macrophages (TAMs) and microglia (MG) are potent regulators of glioma development and progression. However, the dynamic alterations of distinct TAM populations during the course of therapeutic intervention, response, and recurrence have not yet been fully explored. Here, we investigated how radiotherapy changes the relative abundance and phenotypes of brain-resident MG and peripherally recruited monocyte-derived macrophages (MDMs) in glioblastoma. We identified radiation-specific, stage-dependent MG and MDM gene expression signatures in murine gliomas and confirmed altered expression of several genes and proteins in recurrent human glioblastoma. We found that targeting these TAM populations using a colony-stimulating factor-1 receptor (CSF-1R) inhibitor combined with radiotherapy substantially enhanced survival in preclinical models. Our findings reveal the dynamics and plasticity of distinct macrophage populations in the irradiated tumor microenvironment, which has translational relevance for enhancing the efficacy of standard-of-care treatment in gliomas.


Subject(s)
Glioblastoma , Glioma , Animals , Glioblastoma/drug therapy , Glioblastoma/radiotherapy , Glioma/drug therapy , Glioma/radiotherapy , Humans , Macrophages , Mice , Neoplasm Recurrence, Local , Tumor Microenvironment
20.
EMBO J ; 39(15): e103790, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32567735

ABSTRACT

Tumour-associated microglia/macrophages (TAM) are the most numerous non-neoplastic populations in the tumour microenvironment in glioblastoma multiforme (GBM), the most common malignant brain tumour in adulthood. The mTOR pathway, an important regulator of cell survival/proliferation, is upregulated in GBM, but little is known about the potential role of this pathway in TAM. Here, we show that GBM-initiating cells induce mTOR signalling in the microglia but not bone marrow-derived macrophages in both in vitro and in vivo GBM mouse models. mTOR-dependent regulation of STAT3 and NF-κB activity promotes an immunosuppressive microglial phenotype. This hinders effector T-cell infiltration, proliferation and immune reactivity, thereby contributing to tumour immune evasion and promoting tumour growth in mouse models. The translational value of our results is demonstrated in whole transcriptome datasets of human GBM and in a novel in vitro model, whereby expanded-potential stem cells (EPSC)-derived microglia-like cells are conditioned by syngeneic patient-derived GBM-initiating cells. These results raise the possibility that microglia could be the primary target of mTOR inhibition, rather than the intrinsic tumour cells in GBM.


Subject(s)
Brain Neoplasms/immunology , Glioblastoma/immunology , Immune Tolerance , Microglia/immunology , Neoplasm Proteins/immunology , TOR Serine-Threonine Kinases/immunology , Tumor Microenvironment/immunology , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Mice, Knockout , Microglia/pathology , Neoplasm Proteins/genetics , TOR Serine-Threonine Kinases/genetics , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...