Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 8(4): 2857-2863, 2018 Apr 06.
Article in English | MEDLINE | ID: mdl-30984470

ABSTRACT

Ionic liquids (ILs) have been established as effective promoters for the electrocatalytic upconversion of CO2 to various commodity chemicals. Imidazolium ([Im]+) cathode combinations have been reported to selectively catalyze the 2e-/2H+ reduction of CO2 to CO. Recently our laboratory has reported energy-efficient systems for CO production featuring inexpensive bismuth-based cathode materials and ILs comprised of 1,3-dialkylimidazolium cations. As part of our ongoing efforts to understand the factors that drive CO2 reduction at electrode interfaces, we sought to evaluate the catalytic performance of alternative ILs in combination with previously described Bi cathodes. In this work, we demonstrate that protic ionic liquids (PILs) derived from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) effectively promote the electrochemical reduction of CO2 to formate (HCOO-) with high selectivity. The use of PILs comprised of the conjugate acid of DBU, [DBU-H]+, efficiently catalyzed the reduction of CO2 to HCOO- (FEFA ≈ 80%) with significant suppression of CO production (FECO ≈ 20%) in either MeCN or MeCN/H2O (95/5) solution. When they were used in combination with [DBU-H]+-based PILs, Bi-based cathodes achieved current densities for CO2 reduction (j tot ≈ 25-45 mA/cm2) that are comparable to or greater than those reported with imidazolium ILs such as [BMIM]PF6. As we demonstrate herein, the selectivity of the 2e- reduction of CO2 toward HCOO- or CO can be dictated through the choice of the IL promoter present in the electrolysis solution, even in cases in which the same electrocatalyst material is studied. These findings highlight the tunability of bismuth/IL systems for the electrochemical reduction of CO2 with high efficiency and rapid kinetics.

2.
J Am Chem Soc ; 138(1): 356-68, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26693733

ABSTRACT

Two new ligand sets, (pipMe)LH2 and (NO2)LH2 ((pipMe)L = N,N'-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide, (NO2)L = N,N'-bis(2,6-diisopropyl-4-nitrophenyl)pyridine-2,6-dicarboxamide), are reported which are designed to perturb the overall electronics of the copper(III)-hydroxide core and the resulting effects on the thermodynamics and kinetics of its hydrogen-atom abstraction (HAT) reactions. Bond dissociation energies (BDEs) for the O-H bonds of the corresponding Cu(II)-OH2 complexes were measured that reveal that changes in the redox potential for the Cu(III)/Cu(II) couple are only partially offset by opposite changes in the pKa, leading to modest differences in BDE among the three compounds. The effects of these changes were further probed by evaluating the rates of HAT by the corresponding Cu(III)-hydroxide complexes from substrates with C-H bonds of variable strength. These studies revealed an overarching linear trend in the relationship between the log k (where k is the second-order rate constant) and the ΔH of reaction. Additional subtleties in measured rates arise, however, that are associated with variations in hydrogen-atom abstraction barrier heights and tunneling efficiencies over the temperature range from -80 to -20 °C, as inferred from measured kinetic isotope effects and corresponding electronic-structure-based transition-state theory calculations.


Subject(s)
Copper/chemistry , Hydroxides/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Kinetics , Ligands
3.
Inorg Chem ; 54(15): 7579-92, 2015 Aug 03.
Article in English | MEDLINE | ID: mdl-26168331

ABSTRACT

Into the metalloligand Cr[N(o-(NCH2P((i)Pr)2)C6H4)3] (1, CrL) was inserted a second chromium atom to generate the dichromium complex Cr2L (2), which is a homobimetallic analogue of the known MCrL complexes, where M is manganese (3) or iron (4). The cationic and anionic counterparts, [MCrL](+) and [MCrL](-), respectively, were targeted, and each MCr pair was isolated in at least one other redox state. The solid-state structures of the [MCrL](+,0,-) redox members are essentially the same, with ultrashort metal-metal bonds between 1.96 and 1.74 Å. The formal shortness ratios (r) of these interactions are between 0.84 and 0.74 and are interpreted as triple to quintuple metal-metal bonds with the aid of theory. The trio of (d-d)(10) species [Cr2L](-) (2(red)), MnCrL (3), and [FeCrL](+) (4(ox)) are S = 0 diamagnets. On the basis of M-Cr bond distances and theoretical calculations, the strength of the metal-metal bond across the (d-d)(10) series increases in the order Fe < Mn < Cr. The methylene protons in the ligand are shifted downfield in the (1)H NMR spectra, and the diamagnetic anisotropy of the metal-metal bond was calculated as -3500 × 10(-36), -3900 × 10(-36), and -5800 × 10(-36) m(3) molecule(-1) for 2(red), 3, and 4(ox) respectively. The magnitude of diamagnetic anisotropy is, thus, affected more by bond polarity than by bond order. A comparative vis-NIR study of quintuply bonded 2(red) and 3 revealed a large red shift in the δ(4) → δ(3)δ* transition energy upon swapping from the (Cr2)(2+) to the (MnCr)(3+) core. Complex 2(red) was further investigated by resonance Raman spectroscopy, and a band at 434 cm(-1) was assigned as the Cr-Cr bond vibration. Finally, 4(ox) exhibited a Mössbauer doublet with an isomer shift of 0.18 mm/s that suggests a primarily Fe-based oxidation to Fe(I).


Subject(s)
Chromium/chemistry , Coordination Complexes/chemistry , Electrochemistry , Models, Molecular , Molecular Conformation , Oxidation-Reduction
4.
Inorg Chem ; 53(11): 5788-96, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24819403

ABSTRACT

The synthesis of a series of asymmetric mixed 2,6-disubstituted (arylcarboxamido)(arylimino)pyridine ligands and their coordination chemistry toward a series of divalent first-row transition metals (Cu, Co, and Zn) have been explored. Complexes featuring both anionic N,N',N″-carboxamido and neutral O,N,N'-carboxamide coordination have been prepared and characterized by X-ray crystallography, cyclic voltammetry, and UV-visible and EPR spectroscopy. Specifically, (R)LM(X) (M = Cu; X = Cl(-), OAc(-)) and (R)L(H)MX2 (M = Cu, Co, Zn; X = Cl(-), SbF6(-)) complexes that feature N,N',N″- or O,N,N'-coordination are presented. Base-induced linkage isomerization from O,N,N'-carboxamide to N,N',N″-carboxamido coordination is also confirmed by multiple forms of spectroscopy.


Subject(s)
Metals/chemistry , Pyridines/chemistry , Transition Elements , Models, Molecular , Molecular Structure
5.
Angew Chem Int Ed Engl ; 53(25): 6492-5, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24817523

ABSTRACT

[Pd(P(Ar)(tBu)2)2] (1, Ar=naphthyl) reacts with molecular oxygen to form Pd(II) hydroxide dimers in which the naphthyl ring is cyclometalated and one equivalent of phosphine per palladium atom is released. This reaction involves the cleavage of both C-H and O-O bonds, two transformations central to catalytic aerobic oxidizations of hydrocarbons. Observations at low temperature suggest the initial formation of a superoxo complex, which then generates a peroxo complex prior to the C-H activation step. A transition state for energetically viable C-H activation across a Pd-peroxo bond was located computationally.


Subject(s)
Hydrogen/chemistry , Oxygen/chemistry , Palladium/chemistry , Coordination Complexes/chemistry , Crystallography, X-Ray
6.
J Am Chem Soc ; 134(4): 1996-9, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22233169

ABSTRACT

Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kß X-ray emission spectra showed Kß' and Kß(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center.


Subject(s)
Manganese/chemistry , Oxygen/chemistry , Electron Spin Resonance Spectroscopy , Organometallic Compounds/chemistry , Oxidation-Reduction
7.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 7): m824-5, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21836836

ABSTRACT

The title compound, [Mn(2)O(2)(C(10)H(24)N(4))(2)](C(24)H(20)B)(2)Cl·2CH(3)CN, is a mixed-valent Mn(III)/Mn(IV) oxide-bridged mangan-ese dimer with one chloride and two tetra-phenyl-borate counter-anions. There are two non-coordinated mol-ecules of acetonitrile in the formula unit. A center of inversion is present between the two metal atoms, and, consequently, there is no distinction between Mn(III) and Mn(IV) metal centers. In the Mn(2)O(2) core, the Mn-O distances are 1.817 (3) and 1.821 (3) Å. The cyclam ligand is in the cis configuration. The chloride counter-anion resides on a center of symmetry, whereas the tetra-phenyl-borate counter-anion is in a general position. The cyclam ligand is hydrogen bonded to the acetonitrile as well as to the chloride anion. One of the phenyl rings of the anion and the acetonitrile solvent molecule are each disordered over two sets of sites.

8.
J Am Chem Soc ; 132(45): 15869-71, 2010 Nov 17.
Article in English | MEDLINE | ID: mdl-20977226

ABSTRACT

Insight into copper-oxygen species proposed as intermediates in oxidation catalysis is provided by the identification of a Cu(II)-superoxide complex supported by a sterically hindered, pyridinedicarboxamide ligand. A tetragonal, end-on superoxide structure is proposed based on DFT calculations and UV-vis, NMR, EPR, and resonance Raman spectroscopy. The complex yields a trans-1,2-peroxodicopper(II) species upon reaction with [(tmpa)Cu(CH(3)CN)]OTf and, unlike other known Cu(II)-superoxide complexes, acts as a base rather than an electrophilic (H-atom abstracting) reagent in reactions with phenols.


Subject(s)
Copper/chemistry , Superoxides/chemistry , Anions/chemistry , Crystallography, X-Ray , Molecular Structure , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...