Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Plant Genome ; 15(2): e20200, 2022 06.
Article in English | MEDLINE | ID: mdl-35307964

ABSTRACT

The ability to accurately quantify the simultaneous effect of multiple genomic loci on multiple traits is now possible due to current and emerging high-throughput genotyping and phenotyping technologies. To date, most efforts to quantify these genotype-to-phenotype relationships have focused on either multi-trait models that test a single marker at a time or multi-locus models that quantify associations with a single trait. Therefore, the purpose of this study was to compare the performance of a multi-trait, multi-locus stepwise (MSTEP) model selection procedure we developed to (a) a commonly used multi-trait single-locus model and (b) a univariate multi-locus model. We used real marker data in maize (Zea mays L.) and soybean (Glycine max L.) to simulate multiple traits controlled by various combinations of pleiotropic and nonpleiotropic quantitative trait nucleotides (QTNs). In general, we found that both multi-trait models outperformed the univariate multi-locus model, especially when analyzing a trait of low heritability. For traits controlled by either a combination of pleiotropic and nonpleiotropic QTNs or a large number of QTNs (i.e., 50), our MSTEP model often outperformed at least one of the two alternative models. When applied to the analysis of two tocochromanol-related traits in maize grain, MSTEP identified the same peak-associated marker that has been reported in a previous study. We therefore conclude that MSTEP is a useful addition to the suite of statistical models that are commonly used to gain insight into the genetic architecture of agronomically important traits.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Genome-Wide Association Study/methods , Phenotype , Glycine max/genetics , Zea mays/genetics
2.
G3 (Bethesda) ; 12(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-34751373

ABSTRACT

To improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the Wheat PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 92% imputation accuracy with 0.01× sequence coverage, which was slightly lower than the accuracy obtained using the 0.5× sequence coverage (96.6%). Compared to Beagle, on average, PHG imputation was ∼3.5% (P-value < 2 × 10-14) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed from a wild relative into wheat. We found reduced accuracy of imputation with independent 2× GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the database. The accuracy reduction with GBS is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of linkage disequilibrium and proportion of identity-by-descent regions among accessions in the PHG database. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher proportion of genetic variance for heading date and meiotic crossover rate compared to previous studies.


Subject(s)
Polymorphism, Single Nucleotide , Triticum , Animals , Exome , Genotype , Haplotypes/genetics , Information Storage and Retrieval , Triticum/genetics
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34751380

ABSTRACT

Genomic applications such as genomic selection and genome-wide association have become increasingly common since the advent of genome sequencing. The cost of sequencing has decreased in the past two decades; however, genotyping costs are still prohibitive to gathering large datasets for these genomic applications, especially in nonmodel species where resources are less abundant. Genotype imputation makes it possible to infer whole-genome information from limited input data, making large sampling for genomic applications more feasible. Imputation becomes increasingly difficult in heterozygous species where haplotypes must be phased. The practical haplotype graph (PHG) is a recently developed tool that can accurately impute genotypes, using a reference panel of haplotypes. We showcase the ability of the PHG to impute genomic information in the highly heterozygous crop cassava (Manihot esculenta). Accurately phased haplotypes were sampled from runs of homozygosity across a diverse panel of individuals to populate PHG, which proved more accurate than relying on computational phasing methods. The PHG achieved high imputation accuracy, using sparse skim-sequencing input, which translated to substantial genomic prediction accuracy in cross-validation testing. The PHG showed improved imputation accuracy, compared to a standard imputation tool Beagle, especially in predicting rare alleles.


Subject(s)
Manihot , Alleles , Genome-Wide Association Study , Genotype , Haplotypes , Humans , Manihot/genetics , Polymorphism, Single Nucleotide
4.
PLoS Genet ; 17(12): e1009797, 2021 12.
Article in English | MEDLINE | ID: mdl-34928949

ABSTRACT

Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.


Subject(s)
Domestication , Inbreeding Depression/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Genes, Plant , Genetic Variation/genetics , Phenotype , Plant Breeding , Plant Proteins/genetics , Selection, Genetic/genetics , Zea mays/growth & development
5.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34686607

ABSTRACT

Very little is known about how domestication was constrained by the quantitative genetic architecture of crop progenitors and how quantitative genetic architecture was altered by domestication. Yang et al. [C. J. Yang et al., Proc. Natl. Acad. Sci. U.S.A. 116, 5643-5652 (2019)] drew multiple conclusions about how genetic architecture influenced and was altered by maize domestication based on one sympatric pair of teosinte and maize populations. To test the generality of their conclusions, we assayed the structure of genetic variances, genetic correlations among traits, strength of selection during domestication, and diversity in genetic architecture within teosinte and maize. Our results confirm that additive genetic variance is decreased, while dominance genetic variance is increased, during maize domestication. The genetic correlations are moderately conserved among traits between teosinte and maize, while the genetic variance-covariance matrices (G-matrices) of teosinte and maize are quite different, primarily due to changes in the submatrix for reproductive traits. The inferred long-term selection intensities during domestication were weak, and the neutral hypothesis was rejected for reproductive and environmental response traits, suggesting that they were targets of selection during domestication. The G-matrix of teosinte imposed considerable constraint on selection during the early domestication process, and constraint increased further along the domestication trajectory. Finally, we assayed variation among populations and observed that genetic architecture is generally conserved among populations within teosinte and maize but is radically different between teosinte and maize. While selection drove changes in essentially all traits between teosinte and maize, selection explains little of the difference in domestication traits among populations within teosinte or maize.


Subject(s)
Crops, Agricultural/genetics , Genes, Plant , Zea mays/genetics , Evolution, Molecular , Flowers , Gene-Environment Interaction , Reproduction , Zea mays/physiology
6.
Genome Res ; 31(7): 1245-1257, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34045362

ABSTRACT

Thousands of species will be sequenced in the next few years; however, understanding how their genomes work, without an unlimited budget, requires both molecular and novel evolutionary approaches. We developed a sensitive sequence alignment pipeline to identify conserved noncoding sequences (CNSs) in the Andropogoneae tribe (multiple crop species descended from a common ancestor ∼18 million years ago). The Andropogoneae share similar physiology while being tremendously genomically diverse, harboring a broad range of ploidy levels, structural variation, and transposons. These contribute to the potential of Andropogoneae as a powerful system for studying CNSs and are factors we leverage to understand the function of maize CNSs. We found that 86% of CNSs were comprised of annotated features, including introns, UTRs, putative cis-regulatory elements, chromatin loop anchors, noncoding RNA (ncRNA) genes, and several transposable element superfamilies. CNSs were enriched in active regions of DNA replication in the early S phase of the mitotic cell cycle and showed different DNA methylation ratios compared to the genome-wide background. More than half of putative cis-regulatory sequences (identified via other methods) overlapped with CNSs detected in this study. Variants in CNSs were associated with gene expression levels, and CNS absence contributed to loss of gene expression. Furthermore, the evolution of CNSs was associated with the functional diversification of duplicated genes in the context of maize subgenomes. Our results provide a quantitative understanding of the molecular processes governing the evolution of CNSs in maize.

7.
Plant Cell ; 33(4): 882-900, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33681994

ABSTRACT

Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.


Subject(s)
Carotenoids/metabolism , Seeds/genetics , Zea mays/genetics , Zea mays/metabolism , Epistasis, Genetic , Genetic Variation , Genome-Wide Association Study , Phenotype , Plant Proteins/genetics , Quantitative Trait Loci , Seeds/metabolism
8.
Plant Genome ; 13(1): e20009, 2020 03.
Article in English | MEDLINE | ID: mdl-33016627

ABSTRACT

Successful management and utilization of increasingly large genomic datasets is essential for breeding programs to accelerate cultivar development. To help with this, we developed a Sorghum bicolor Practical Haplotype Graph (PHG) pangenome database that stores haplotypes and variant information. We developed two PHGs in sorghum that were used to identify genome-wide variants for 24 founders of the Chibas sorghum breeding program from 0.01x sequence coverage. The PHG called single nucleotide polymorphisms (SNPs) with 5.9% error at 0.01x coverage-only 3% higher than PHG error when calling SNPs from 8x coverage sequence. Additionally, 207 progenies from the Chibas genomic selection (GS) training population were sequenced and processed through the PHG. Missing genotypes were imputed from PHG parental haplotypes and used for genomic prediction. Mean prediction accuracies with PHG SNP calls range from .57-.73 and are similar to prediction accuracies obtained with genotyping-by-sequencing or targeted amplicon sequencing (rhAmpSeq) markers. This study demonstrates the use of a sorghum PHG to impute SNPs from low-coverage sequence data and shows that the PHG can unify genotype calls across multiple sequencing platforms. By reducing input sequence requirements, the PHG can decrease the cost of genotyping, make GS more feasible, and facilitate larger breeding populations. Our results demonstrate that the PHG is a useful research and breeding tool that maintains variant information from a diverse group of taxa, stores sequence data in a condensed but readily accessible format, unifies genotypes across genotyping platforms, and provides a cost-effective option for genomic selection.


Subject(s)
Sorghum , Cost-Benefit Analysis , Genome , Genomics , Haplotypes , Sorghum/genetics
9.
BMC Genomics ; 21(1): 689, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-33023467

ABSTRACT

BACKGROUND: MiRNAs play essential roles in plant development and response to biotic and abiotic stresses through interaction with their target genes. The expression level of miRNAs shows great variations among different plant accessions, developmental stages, and tissues. Little is known about the content within the plant genome contributing to the variations in plants. This study aims to identify miRNA expression-related quantitative trait loci (miR-QTLs) in the maize genome. RESULTS: The miRNA expression level from next generation sequencing (NGS) small RNA libraries derived from mature leaf samples of the maize panel (200 maize lines) was estimated as phenotypes, and maize Hapmap v3.2.1 was chosen as the genotype for the genome-wide association study (GWAS). A total of four significant miR-eQTLs were identified contributing to miR156k-5p, miR159a-3p, miR390a-5p and miR396e-5p, and all of them are trans-eQTLs. In addition, a strong positive coexpression of miRNA was found among five miRNA families. Investigation of the effects of these miRNAs on the expression levels and target genes provided evidence that miRNAs control the expression of their targets by suppression and enhancement. CONCLUSIONS: These identified significant miR-eQTLs contribute to the diversity of miRNA expression in the maize penal at the developmental stages of mature leaves in maize, and the positive and negative regulation between miRNA and its target genes has also been uncovered.


Subject(s)
MicroRNAs/genetics , Quantitative Trait Loci , Zea mays/genetics , Gene Expression Regulation, Plant , Genome-Wide Association Study/methods , MicroRNAs/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
10.
G3 (Bethesda) ; 10(10): 3611-3622, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32816917

ABSTRACT

Plant disease resistance is largely governed by complex genetic architecture. In maize, few disease resistance loci have been characterized. Near-isogenic lines are a powerful genetic tool to dissect quantitative trait loci. We analyzed an introgression library of maize (Zea mays) near-isogenic lines, termed a nested near-isogenic line library for resistance to northern leaf blight caused by the fungal pathogen Setosphaeria turcica The population was comprised of 412 BC5F4 near-isogenic lines that originated from 18 diverse donor parents and a common recurrent parent, B73. Single nucleotide polymorphisms identified through genotyping by sequencing were used to define introgressions and for association analysis. Near-isogenic lines that conferred resistance and susceptibility to northern leaf blight were comprised of introgressions that overlapped known northern leaf blight quantitative trait loci. Genome-wide association analysis and stepwise regression further resolved five quantitative trait loci regions, and implicated several candidate genes, including Liguleless1, a key determinant of leaf architecture in cereals. Two independently-derived mutant alleles of liguleless1 inoculated with S. turcica showed enhanced susceptibility to northern leaf blight. In the maize nested association mapping population, leaf angle was positively correlated with resistance to northern leaf blight in five recombinant inbred line populations, and negatively correlated with northern leaf blight in four recombinant inbred line populations. This study demonstrates the power of an introgression library combined with high density marker coverage to resolve quantitative trait loci. Furthermore, the role of liguleless1 in leaf architecture and in resistance to northern leaf blight has important applications in crop improvement.


Subject(s)
Genome-Wide Association Study , Zea mays , Ascomycota , Disease Resistance/genetics , Phenotype , Plant Diseases/genetics , Quantitative Trait Loci , Zea mays/genetics
11.
PLoS Genet ; 16(5): e1008791, 2020 05.
Article in English | MEDLINE | ID: mdl-32407310

ABSTRACT

The genetics of domestication has been extensively studied ever since the rediscovery of Mendel's law of inheritance and much has been learned about the genetic control of trait differences between crops and their ancestors. Here, we ask how domestication has altered genetic architecture by comparing the genetic architecture of 18 domestication traits in maize and its ancestor teosinte using matched populations. We observed a strongly reduced number of QTL for domestication traits in maize relative to teosinte, which is consistent with the previously reported depletion of additive variance by selection during domestication. We also observed more dominance in maize than teosinte, likely a consequence of selective removal of additive variants. We observed that large effect QTL have low minor allele frequency (MAF) in both maize and teosinte. Regions of the genome that are strongly differentiated between teosinte and maize (high FST) explain less quantitative variation in maize than teosinte, suggesting that, in these regions, allelic variants were brought to (or near) fixation during domestication. We also observed that genomic regions of high recombination explain a disproportionately large proportion of heritable variance both before and after domestication. Finally, we observed that about 75% of the additive variance in both teosinte and maize is "missing" in the sense that it cannot be ascribed to detectable QTL and only 25% of variance maps to specific QTL. This latter result suggests that morphological evolution during domestication is largely attributable to very large numbers of QTL of very small effect.


Subject(s)
Genetic Variation , Quantitative Trait Loci , Zea mays/genetics , Domestication , Gene Flow , Gene Frequency , Genes, Plant , Genetics, Population , Quantitative Trait, Heritable , Selection, Genetic , Zea mays/classification
12.
Genetics ; 215(1): 215-230, 2020 05.
Article in English | MEDLINE | ID: mdl-32152047

ABSTRACT

Single-cross hybrids have been critical to the improvement of maize (Zea mays L.), but the characterization of their genetic architectures remains challenging. Previous studies of hybrid maize have shown the contribution of within-locus complementation effects (dominance) and their differential importance across functional classes of loci. However, they have generally considered panels of limited genetic diversity, and have shown little benefit from genomic prediction based on dominance or functional enrichments. This study investigates the relevance of dominance and functional classes of variants in genomic models for agronomic traits in diverse populations of hybrid maize. We based our analyses on a diverse panel of inbred lines crossed with two testers representative of the major heterotic groups in the U.S. (1106 hybrids), as well as a collection of 24 biparental populations crossed with a single tester (1640 hybrids). We investigated three agronomic traits: days to silking (DTS), plant height (PH), and grain yield (GY). Our results point to the presence of dominance for all traits, but also among-locus complementation (epistasis) for DTS and genotype-by-environment interactions for GY. Consistently, dominance improved genomic prediction for PH only. In addition, we assessed enrichment of genetic effects in classes defined by genic regions (gene annotation), structural features (recombination rate and chromatin openness), and evolutionary features (minor allele frequency and evolutionary constraint). We found support for enrichment in genic regions and subsequent improvement of genomic prediction for all traits. Our results suggest that dominance and gene annotations improve genomic prediction across diverse populations in hybrid maize.


Subject(s)
Edible Grain/genetics , Genes, Dominant , Hybridization, Genetic , Models, Genetic , Plant Breeding/methods , Quantitative Trait, Heritable , Zea mays/genetics , Edible Grain/growth & development , Epistasis, Genetic , Evolution, Molecular , Gene-Environment Interaction , Zea mays/growth & development
13.
Proc Natl Acad Sci U S A ; 116(12): 5643-5652, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30842282

ABSTRACT

The process of evolution under domestication has been studied using phylogenetics, population genetics-genomics, quantitative trait locus (QTL) mapping, gene expression assays, and archaeology. Here, we apply an evolutionary quantitative genetic approach to understand the constraints imposed by the genetic architecture of trait variation in teosinte, the wild ancestor of maize, and the consequences of domestication on genetic architecture. Using modern teosinte and maize landrace populations as proxies for the ancestor and domesticate, respectively, we estimated heritabilities, additive and dominance genetic variances, genetic-by-environment variances, genetic correlations, and genetic covariances for 18 domestication-related traits using realized genomic relationships estimated from genome-wide markers. We found a reduction in heritabilities across most traits, and the reduction is stronger in reproductive traits (size and numbers of grains and ears) than vegetative traits. We observed larger depletion in additive genetic variance than dominance genetic variance. Selection intensities during domestication were weak for all traits, with reproductive traits showing the highest values. For 17 of 18 traits, neutral divergence is rejected, suggesting they were targets of selection during domestication. Yield (total grain weight) per plant is the sole trait that selection does not appear to have improved in maize relative to teosinte. From a multivariate evolution perspective, we identified a strong, nonneutral divergence between teosinte and maize landrace genetic variance-covariance matrices (G-matrices). While the structure of G-matrix in teosinte posed considerable genetic constraint on early domestication, the maize landrace G-matrix indicates that the degree of constraint is more unfavorable for further evolution along the same trajectory.


Subject(s)
Genetics, Population/methods , Zea mays/genetics , Agriculture , Chromosome Mapping/methods , Chromosomes, Plant/physiology , Domestication , Edible Grain/genetics , Evolution, Molecular , Genomics , Phenotype , Plant Proteins/genetics , Quantitative Trait Loci , Selection, Genetic/genetics
14.
Sci Rep ; 8(1): 6848, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717181

ABSTRACT

Southern leaf blight (SLB) and northern leaf blight (NLB) are the two major foliar diseases limiting maize production worldwide. Upon previous study with the nested association mapping (NAM) population, which consist of 5,000 recombinant inbred lines from 25 parents crossed with B73, we expanded the phenotyping environments from the United States (US) to China, and increased the marker densities from 1106 to 7386 SNPs for linkage mapping, and from 1.6 to 28.5 million markers for association mapping. We identified 49 SLB and 48 NLB resistance-related unique QTLs in linkage mapping, and multiple loci in association mapping with candidate genes involved in known plant disease-resistance pathways. Furthermore, an independent natural population with 282 diversified inbred lines were sequenced for four candidate genes selected based on their biological functions. Three of them demonstrated significant associations with disease resistance. These findings provided valuable resources for further implementations to develop varieties with superior resistance for NLB and SLB.


Subject(s)
Disease Resistance/genetics , Genetic Linkage , Plant Diseases/genetics , Quantitative Trait Loci , Zea mays/genetics , China , Chromosome Mapping/methods , Chromosomes, Plant , Genome-Wide Association Study/methods , Genotype , Polymorphism, Single Nucleotide , United States
15.
Heredity (Edinb) ; 121(6): 648-662, 2018 12.
Article in English | MEDLINE | ID: mdl-29765161

ABSTRACT

Improvement of statistical methods is crucial for realizing the potential of increasingly dense genetic markers. Bayesian methods treat all markers as random effects, exhibit an advantage on dense markers, and offer the flexibility of using different priors. In contrast, genomic best linear unbiased prediction (gBLUP) is superior in computing speed, but only superior in prediction accuracy for extremely complex traits. Currently, the existing variety in the BLUP method is insufficient for adapting to new sequencing technologies and traits with different genetic architectures. In this study, we found two ways to change the kinship derivation in the BLUP method that improve prediction accuracy while maintaining the computational advantage. First, using the settlement under progressively exclusive relationship (SUPER) algorithm, we substituted all available markers with estimated quantitative trait nucleotides (QTNs) to derive kinship. Second, we compressed individuals into groups based on kinship, and then used the groups as random effects instead of individuals. The two methods were named as SUPER BLUP (sBLUP) and compressed BLUP (cBLUP). Analyses on both simulated and real data demonstrated that these two methods offer flexibility for evaluating a variety of traits, covering a broadened realm of genetic architectures. For traits controlled by small numbers of genes, sBLUP outperforms Bayesian LASSO (least absolute shrinkage and selection operator). For traits with low heritability, cBLUP outperforms both gBLUP and Bayesian LASSO methods. We implemented these new BLUP alphabet series methods in an R package, Genome Association and Prediction Integrated Tool (GAPIT), available at http://zzlab.net/GAPIT .


Subject(s)
Genome , Quantitative Trait Loci , Animals , Arabidopsis/genetics , Bayes Theorem , Mice , Oryza/genetics , Zea mays/genetics
16.
Nature ; 555(7697): 520-523, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29539638

ABSTRACT

Here we report a multi-tissue gene expression resource that represents the genotypic and phenotypic diversity of modern inbred maize, and includes transcriptomes in an average of 255 lines in seven tissues. We mapped expression quantitative trait loci and characterized the contribution of rare genetic variants to extremes in gene expression. Some of the new mutations that arise in the maize genome can be deleterious; although selection acts to keep deleterious variants rare, their complete removal is impeded by genetic linkage to favourable loci and by finite population size. Modern maize breeders have systematically reduced the effects of this constant mutational pressure through artificial selection and self-fertilization, which have exposed rare recessive variants in elite inbred lines. However, the ongoing effect of these rare alleles on modern inbred maize is unknown. By analysing this gene expression resource and exploiting the extreme diversity and rapid linkage disequilibrium decay of maize, we characterize the effect of rare alleles and evolutionary history on the regulation of expression. Rare alleles are associated with the dysregulation of expression, and we correlate this dysregulation to seed-weight fitness. We find enrichment of ancestral rare variants among expression quantitative trait loci mapped in modern inbred lines, which suggests that historic bottlenecks have shaped regulation. Our results suggest that one path for further genetic improvement in agricultural species lies in purging the rare deleterious variants that have been associated with crop fitness.


Subject(s)
Alleles , Gene Expression Regulation, Plant/genetics , Genetic Fitness/genetics , Zea mays/genetics , Crops, Agricultural/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genotype , Linkage Disequilibrium , Phenotype , Population Density , Quantitative Trait Loci/genetics , RNA, Plant/genetics , Seeds/genetics , Sequence Analysis, RNA
17.
Plant Cell ; 29(10): 2374-2392, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28970338

ABSTRACT

Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops.


Subject(s)
Vitamin E/metabolism , Zea mays/metabolism , Chlorophyll/metabolism , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Tocopherols/metabolism , Tocotrienols/metabolism
18.
Plant Cell ; 29(7): 1622-1641, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28698237

ABSTRACT

Leaf architecture directly influences canopy structure, consequentially affecting yield. We discovered a maize (Zea mays) mutant with aberrant leaf architecture, which we named drooping leaf1 (drl1). Pleiotropic mutations in drl1 affect leaf length and width, leaf angle, and internode length and diameter. These phenotypes are enhanced by natural variation at the drl2 enhancer locus, including reduced expression of the drl2-Mo17 allele in the Mo17 inbred. A second drl2 allele, produced by transposon mutagenesis, interacted synergistically with drl1 mutants and reduced drl2 transcript levels. The drl genes are required for proper leaf patterning, development and cell proliferation of leaf support tissues, and for restricting auricle expansion at the midrib. The paralogous loci encode maize CRABS CLAW co-orthologs in the YABBY family of transcriptional regulators. The drl genes are coexpressed in incipient and emergent leaf primordia at the shoot apex, but not in the vegetative meristem or stem. Genome-wide association studies using maize NAM-RIL (nested association mapping-recombinant inbred line) populations indicated that the drl loci reside within quantitative trait locus regions for leaf angle, leaf width, and internode length and identified rare single nucleotide polymorphisms with large phenotypic effects for the latter two traits. This study demonstrates that drl genes control the development of key agronomic traits in maize.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins/genetics , Zea mays/physiology , Base Sequence , Conserved Sequence , Genome-Wide Association Study , Meristem/genetics , Multigene Family , Mutation , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Stems/genetics , Plant Stems/physiology , Quantitative Trait Loci , Zea mays/genetics
19.
Genetics ; 204(1): 99-113, 2016 09.
Article in English | MEDLINE | ID: mdl-27412713

ABSTRACT

Strong directional selection occurred during the domestication of maize from its wild ancestor teosinte, reducing its genetic diversity, particularly at genes controlling domestication-related traits. Nevertheless, variability for some domestication-related traits is maintained in maize. The genetic basis of this could be sequence variation at the same key genes controlling maize-teosinte differentiation (due to lack of fixation or arising as new mutations after domestication), distinct loci with large effects, or polygenic background variation. Previous studies permit annotation of maize genome regions associated with the major differences between maize and teosinte or that exhibit population genetic signals of selection during either domestication or postdomestication improvement. Genome-wide association studies and genetic variance partitioning analyses were performed in two diverse maize inbred line panels to compare the phenotypic effects and variances of sequence polymorphisms in regions involved in domestication and improvement to the rest of the genome. Additive polygenic models explained most of the genotypic variation for domestication-related traits; no large-effect loci were detected for any trait. Most trait variance was associated with background genomic regions lacking previous evidence for involvement in domestication. Improvement sweep regions were associated with more trait variation than expected based on the proportion of the genome they represent. Selection during domestication eliminated large-effect genetic variants that would revert maize toward a teosinte type. Small-effect polygenic variants (enriched in the improvement sweep regions of the genome) are responsible for most of the standing variation for domestication-related traits in maize.


Subject(s)
Zea mays/genetics , Chromosome Mapping/methods , Chromosomes, Plant , Domestication , Genes, Plant , Genetic Variation , Genetics, Population , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Models, Genetic , Phenotype , Plant Breeding/methods , Polymorphism, Genetic , Quantitative Trait Loci , Selection, Genetic
20.
Plant J ; 86(5): 391-402, 2016 06.
Article in English | MEDLINE | ID: mdl-27012534

ABSTRACT

Flowering time is one of the major adaptive traits in domestication of maize and an important selection criterion in breeding. To detect more maize flowering time variants we evaluated flowering time traits using an extremely large multi- genetic background population that contained more than 8000 lines under multiple Sino-United States environments. The population included two nested association mapping (NAM) panels and a natural association panel. Nearly 1 million single-nucleotide polymorphisms (SNPs) were used in the analyses. Through the parallel linkage analysis of the two NAM panels, both common and unique flowering time regions were detected. Genome wide, a total of 90 flowering time regions were identified. One-third of these regions were connected to traits associated with the environmental sensitivity of maize flowering time. The genome-wide association study of the three panels identified nearly 1000 flowering time-associated SNPs, mainly distributed around 220 candidate genes (within a distance of 1 Mb). Interestingly, two types of regions were significantly enriched for these associated SNPs - one was the candidate gene regions and the other was the approximately 5 kb regions away from the candidate genes. Moreover, the associated SNPs exhibited high accuracy for predicting flowering time.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Zea mays/genetics , Breeding , Flowers/genetics , Flowers/physiology , Genetic Background , Genetic Linkage , Phenotype , Polymorphism, Single Nucleotide , Time Factors , Zea mays/physiology
SELECTION OF CITATIONS
SEARCH DETAIL