Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Dis Aquat Organ ; 159: 1-7, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989788

ABSTRACT

Chytridiomycosis is a devastating disease and is a key cause of amphibian population declines around the world. Despite active research on this amphibian disease system for over 2 decades, we still do not have treatment methods that are safe and that can be broadly used across species. Here, we show evidence that voriconazole is a successful method of treatment for 1 species of amphibian in captivity and that this treatment could offer benefits over other treatment options like heat or itraconazole, which are not able to be used for all species and life stages. We conducted 2 treatments of chytridiomycosis using voriconazole. The treatment was effective and resulted in 100% pathogen clearance, and mortality ceased. Additionally, treating frogs with voriconazole requires less handling than treatment methods like itraconazole and requires no specialized equipment, like heat treatment. We highlight that clinical treatment trials should be conducted to identify an optimum dosage and treatment time and that trials should test whether this treatment is safe and effective for tadpoles and other species.


Subject(s)
Antifungal Agents , Chytridiomycota , Mycoses , Voriconazole , Animals , Voriconazole/therapeutic use , Antifungal Agents/therapeutic use , Mycoses/veterinary , Mycoses/drug therapy , Mycoses/microbiology , Chytridiomycota/drug effects , Anura
2.
PeerJ ; 12: e17406, 2024.
Article in English | MEDLINE | ID: mdl-38860213

ABSTRACT

Amphibians are experiencing declines globally, with emerging infectious diseases as one of the main causes. Haematological parameters present a useful method for determining the health status of animals and the effects of particular diseases, but the interpretation of differential cell counts relies on knowing the normal ranges for the species and factors that can affect these counts. However, there is very little data on either normal haematological parameters or guides for blood cell types for free-ranging frog species across the world. This study aims to 1) create a visual guide for three different Australian frog species: Litoria paraewingi, Limnodynastes dumerilii, and Crinia signifera, 2) determine the proportions of erythrocytes to leukocytes and 3) differential leukocytes within blood smears from these three species and 4) assess the association between parasites and differential counts. We collected blood samples from free-ranging frogs and analysed blood smears. We also looked for ectoparasites and tested for the fungal disease chytridiomycosis. Overall, we found that the differentials of erythrocytes to leukocytes were not affected by species, but the proportions of different leukocytes did vary across species. For example, while lymphocytes were the most common type of leukocyte across the three species, eosinophils were relatively common in Limnodynastes dumerilii but rarely present in the other two species. We noted chytridiomycosis infection as well as ectoparasites present in some individuals but found no effect of parasites on blood parameters. Our results add baseline haematological parameters for three Australian frog species and provide an example of how different frog species can vary in their differential blood cell counts. More information is needed on frog haematological data before these parameters can be used to determine the health status of wild or captive frogs.


Subject(s)
Anura , Animals , Anura/blood , Anura/parasitology , Anura/microbiology , Australia , Reference Values , Erythrocytes/parasitology , Blood Cell Count/veterinary , Hematologic Tests/veterinary , Species Specificity , Leukocyte Count , Male
3.
Ecol Lett ; 27(5): e14431, 2024 May.
Article in English | MEDLINE | ID: mdl-38712705

ABSTRACT

There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, using Batrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in "novel" (quantified by geographic and phylogenetic distance) host-pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental-scale common garden experiment and global-scale meta-analysis demonstrate that local amphibian-fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host-pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host-pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm.


Subject(s)
Batrachochytrium , Host-Pathogen Interactions , Animals , Batrachochytrium/genetics , Batrachochytrium/physiology , Anura/microbiology , Amphibians/microbiology , Mycoses/veterinary , Mycoses/microbiology , Adaptation, Physiological , Phylogeny
4.
Environ Microbiol Rep ; 16(3): e13274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38775382

ABSTRACT

The pathogenic fungus Batrachochytrium dendrobatidis has caused declines of amphibians worldwide. Yet our understanding of how water quality influences fungal pathogenicity is limited. Here, we reviewed experimental studies on the effect of water quality on this pathogen to determine which parameters impacted disease dynamics consistently. The strongest evidence for protective effects is salinity which shows strong antifungal properties in hosts at natural levels. Although many fungicides had detrimental effects on the fungal pathogen in vitro, their impact on the host is variable and they can worsen infection outcomes. However, one fungicide, epoxiconazole, reduced disease effects experimentally and likely in the field. While heavy metals are frequently studied, there is weak evidence that they influence infection outcomes. Nitrogen and phosphorous do not appear to impact pathogen growth or infection in the amphibian host. The effects of other chemicals, like pesticides and disinfectants on infection were mostly unclear with mixed results or lacking an in vivo component. Our study shows that water chemistry does impact disease dynamics, but the effects of specific parameters require more investigation. Improving our understanding of how water chemistry influences disease dynamics will help predict the impact of chytridiomycosis, especially in amphibian populations affected by land use changes.


Subject(s)
Amphibians , Batrachochytrium , Water Quality , Animals , Batrachochytrium/drug effects , Amphibians/microbiology , Mycoses/microbiology , Mycoses/veterinary , Mycoses/prevention & control , Salinity , Fungicides, Industrial/pharmacology , Chytridiomycota/drug effects , Chytridiomycota/pathogenicity , Pesticides/pharmacology , Disinfectants/pharmacology , Antifungal Agents/pharmacology
5.
Annu Rev Anim Biosci ; 12: 113-133, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358840

ABSTRACT

Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.


Subject(s)
Chytridiomycota , Mycoses , Animals , Australia , Plant Breeding , Mycoses/drug therapy , Mycoses/veterinary , Mycoses/microbiology , Amphibians
6.
Dis Aquat Organ ; 155: 141-146, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37706644

ABSTRACT

The emerging fungal pathogen Batrachochytrium dendrobatidis (Bd) threatens hundreds of amphibian species globally. During laboratory-based experiments it is often essential to quantify live Bd cells, but a comparison of the effectiveness of methods for counting and assessing the viability of the infectious zoospore life stage has not been done. A direct comparison of staining methods that assess viability will ensure that the most accurate and efficient method is used. Here, we compared the use of 2 relatively cheap common stains, trypan blue and methylene blue, and assessed their accuracy and precision for estimating the viability of Bd zoospores during both manual counting and colorimetric assays. We stained known proportions of killed Bd zoospores (0, 0.25, 0.50, 0.75, and 1.00) with each stain and estimated the proportion of stained (dead) and unstained (viable) cells in each sample using both manual counting and colorimetric assays. Trypan blue was found to be a much more effective stain than methylene blue for both microscopy and colorimetric assays. Additionally, counting zoospores via microscopy was both a more accurate and precise technique. We recommend using manual counts via microscopy using the trypan blue stain for assessing Bd zoospore viability.


Subject(s)
Batrachochytrium , Methylene Blue , Animals , Trypan Blue , Biological Assay/veterinary
7.
Oecologia ; 202(2): 445-454, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37349661

ABSTRACT

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused catastrophic frog declines on several continents, but disease outcome is mediated by a number of factors. Host life stage is an important consideration and many studies have highlighted the vulnerability of recently metamorphosed or juvenile frogs compared to adults. The majority of these studies have taken place in a laboratory setting, and there is a general paucity of longitudinal field studies investigating the influence of life stage on disease outcome. In this study, we assessed the effect of endemic Bd on juvenile Mixophyes fleayi (Fleay's barred frog) in subtropical eastern Australian rainforest. Using photographic mark-recapture, we made 386 captures of 116 individuals and investigated the effect of Bd infection intensity on the apparent mortality rates of frogs using a multievent model correcting for infection state misclassification. We found that neither Bd infection status nor infection intensity predicted mortality in juvenile frogs, counter to the expectation that early life stages are more vulnerable to disease, despite average high infection prevalence (0.35, 95% HDPI [0.14, 0.52]). Additionally, we found that observed infection prevalence and intensity were somewhat lower for juveniles than adults. Our results indicate that in this Bd-recovered species, the realized impacts of chytridiomycosis on juveniles were apparently low, likely resulting in high recruitment contributing to population stability. We highlight the importance of investigating factors relating to disease outcome in a field setting and make recommendations for future studies.


Subject(s)
Chytridiomycota , Mycoses , Humans , Animals , Australia , Anura/microbiology , Mycoses/veterinary , Mycoses/microbiology
8.
PeerJ ; 11: e15179, 2023.
Article in English | MEDLINE | ID: mdl-37101793

ABSTRACT

Amphibians are experiencing dramatic worldwide declines and many species are reliant on captive breeding programs to ensure continued survival. However, captive breeding in amphibians is not always successful because many species, especially ones in decline, have particular and specific breeding needs. The endangered alpine tree frog, Litoria verreauxii alpina, has never been bred in captivity before. Due to its dramatic declines across the Australian Alps caused by the global pandemic chytridiomycosis, the species is a potential candidate for captive assurance colonies, which rely on captive breeding. For this study we tested hormone induction using two hormones that have had some success in other amphibian species, to no avail. We then tried outdoor breeding mesocosms during the winter/spring at temperatures similar to their natural breeding season, which was successful. Sixty-five percent of the egg masses laid successfully hatched tadpoles. Females laid more than one clutch over the experiment indicating either a shorter than annual ovulation cycle, or that females are capable of partial ovulation during breeding events. Outdoor breeding mesocosms are a possibility outside the native climate of a species, provided that temperatures overlap with their natural environment. Here, we highlight that troubleshooting is essential before embarking on a captive breeding program of a species that has not been bred before. Hormonal induction of breeding is not always successful; therefore, outdoor mesocosms might be required to achieve healthy tadpoles.


Subject(s)
Anura , Endangered Species , Animals , Female , Australia , Conservation of Natural Resources , Ovulation
9.
Reprod Fertil Dev ; 34(13): 867-874, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35617991

ABSTRACT

CONTEXT: With global amphibian biodiversity rapidly declining, improving reproductive technology outcomes has become essential. Captive breeding programs have struggled because amphibian breeding physiology often requires specific environmental cues that reproductive technologies can circumvent. AIMS: This study tests the efficiency of hormonal induction by evaluating sperm quality in the endangered Litoria verreauxii alpina . METHODS: We assessed the effects of exogenous hormones - gonadotrophin-releasing hormone agonist (GnRH-a, Lucrin), and human chorionic gonadotrophin (hCG, Chorulon) - on sperm quality. KEY RESULTS: Hormone induction with hCG showed high efficacy while GnRH-a yielded a low response in producing sperm. Sperm quantity was affected by time post injection, with the greatest quantity at 1h post injection. Sperm quality was also affected by time, where the sperm head size decreased by 11% at 7h post injection. CONCLUSIONS: Based on the results from this study, we recommend that that sperm be collected soon after induction, and not more than 4h post induction in L. v. alpina . More work needs to be completed before recommending an optimal hormone induction method and dose, but 120IU of hCG per male was successful for inducing spermiation. IMPLICATIONS: This study represents a useful starting point for developing assisted reproductive techniques for non-model organisms.


Subject(s)
Semen , Spermatozoa , Animals , Anura/physiology , Chorionic Gonadotropin/pharmacology , Gonadotropin-Releasing Hormone/pharmacology , Humans , Male
10.
Ecology ; 103(9): e3759, 2022 09.
Article in English | MEDLINE | ID: mdl-35593515

ABSTRACT

Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g., years). Here, we sought to understand the causes and consequences of seasonal infection dynamics in leopard frogs (Rana sphenocephala and Rana pipiens) infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). We addressed three questions broadly applicable to seasonal host-parasite systems. First, to what degree are observed seasonal patterns in infection driven by temperature-dependent infection processes compared to seasonal host demographic processes? Second, how does seasonal variation in maintenance potential affect long-term pathogen persistence in multi-host communities? Third, does high deterministic maintenance potential relate to the long-term stochastic persistence of pathogens in host populations with seasonal infection dynamics? To answer these questions, we used field data collected over 3 years on >1400 amphibians across four geographic locations, laboratory and mesocosm experiments, and a novel mathematical model. We found that the mechanisms that drive seasonal prevalence were different from those driving seasonal infection intensity. Seasonal variation in Bd prevalence was driven primarily by changes in host contact rates associated with breeding migrations to and from aquatic habitat. In contrast, seasonal changes in infection intensity were driven by temperature-induced changes in Bd growth rate. Using our model, we found that the maintenance potential of leopard frogs varied significantly throughout the year and that seasonal troughs in infection prevalence made it unlikely that leopard frogs were responsible for long-term Bd persistence in these seasonal amphibian communities, highlighting the importance of alternative pathogen reservoirs for Bd persistence. Our results have broad implications for management in seasonal host-pathogen systems, showing that seasonal changes in host and pathogen vital rates, rather than the depletion of susceptible hosts, can lead to troughs in pathogen prevalence and stochastic pathogen extirpation.


Subject(s)
Chytridiomycota , Mycoses , Amphibians , Animals , Ecosystem , Mycoses/epidemiology , Mycoses/veterinary , Plant Breeding , Ranidae
11.
Evolution ; 75(10): 2555-2567, 2021 10.
Article in English | MEDLINE | ID: mdl-34383313

ABSTRACT

The devastating infectious disease chytridiomycosis has caused declines of amphibians across the globe, yet some populations are persisting and even recovering. One understudied effect of wildlife disease is changes in reproductive effort. Here, we aimed to understand if the disease has plastic effects on reproduction and if reproductive effort could evolve with disease endemism. We compared the effects of experimental pathogen exposure (trait plasticity) and population-level disease history (evolution in trait baseline) on reproductive effort using gametogenesis as a proxy in the declining and endangered frog Litoria verreauxii alpina. We found that unexposed males from disease-endemic populations had higher reproductive effort, which is consistent with an evolutionary response to chytridiomycosis. We also found evidence of trait plasticity, where males and females were affected differently by infection: pathogen exposed males had higher reproductive effort (larger testes), whereas females had reduced reproductive effort (smaller and fewer developed eggs) regardless of the population of origin. Infectious diseases can cause plastic changes in the reproductive effort at an individual level, and population-level disease exposure can result in changes to baseline reproductive effort; therefore, individual- and population-level effects of disease should be considered when designing management and conservation programs for threatened and declining species.


Subject(s)
Chytridiomycota , Mycoses , Animals , Anura , Female , Male , Reproduction
12.
Ecol Lett ; 24(1): 130-148, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33067922

ABSTRACT

Emerging infectious diseases have caused many species declines, changes in communities and even extinctions. There are also many species that persist following devastating declines due to disease. The broad mechanisms that enable host persistence following declines include evolution of resistance or tolerance, changes in immunity and behaviour, compensatory recruitment, pathogen attenuation, environmental refugia, density-dependent transmission and changes in community composition. Here we examine the case of chytridiomycosis, the most important wildlife disease of the past century. We review the full breadth of mechanisms allowing host persistence, and synthesise research on host, pathogen, environmental and community factors driving persistence following chytridiomycosis-related declines and overview the current evidence and the information required to support each mechanism. We found that for most species the mechanisms facilitating persistence have not been identified. We illustrate how the mechanisms that drive long-term host population dynamics determine the most effective conservation management strategies. Therefore, understanding mechanisms of host persistence is important because many species continue to be threatened by disease, some of which will require intervention. The conceptual framework we describe is broadly applicable to other novel disease systems.


Subject(s)
Chytridiomycota , Mycoses , Amphibians , Animals , Mycoses/veterinary , Population Dynamics
13.
Oecologia ; 194(1-2): 267-281, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32880026

ABSTRACT

Environmental DNA (eDNA) detection is a valuable conservation tool that can be used to identify and monitor imperiled or invasive species and wildlife pathogens. Batrachochytrium pathogens are of global conservation concern because they are a leading cause of amphibian decline. While eDNA techniques have been used to detect Batrachochytrium DNA in the environment, a systematic comparison of extraction methods across environmental samples is lacking. In this study, we first compared eDNA extraction methods and found that a soil extraction kit (Qiagen PowerSoil) was the most effective for detecting Batrachochytrium dendrobatidis in water samples. The PowerSoil extraction had a minimum detection level of 100 zoospores and had a two- to four-fold higher detection probability than other commonly used extraction methods (e.g., QIAamp extraction, DNeasy+Qiashredder extraction method, respectively). Next, we used this extraction method on field-collected water and sediment samples and were able to detect pathogen DNA in both. While field-collected water filters were equivalent to amphibian skin swab samples in detecting the presence of pathogen DNA, the seasonal patterns in pathogen quantity were different between skin swabs and water samples. Detection rate was lowest in sediment samples. We also found that detection probability increases with the volume of water filtered. Our results indicate that water filter eDNA samples can be accurate in detecting pathogen presence at the habitat scale but their utility for quantifying pathogen loads in the environment appears limited. We suggest that eDNA techniques be used for early warning detection to guide animal sampling efforts.


Subject(s)
Chytridiomycota , DNA, Environmental , Amphibians , Animals , Chytridiomycota/genetics , DNA , Ecosystem
14.
Dis Aquat Organ ; 139: 233-243, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32495749

ABSTRACT

Accurate detection of the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) is critical for wildlife disease research; however, false negatives in detection do occur. Here we compared different DNA extraction methods to determine the threshold for Bd detection and identify an optimal extraction method to improve detection and quantification of the pathogen. We extracted both lab-created cell suspension standards using PrepMan Ultra, Chelex resin, and 3 spin column DNA extraction kits (Qiagen DNeasy Blood and Tissue, Zymo Quick DNA miniprep, and IBI gMAX mini kit), and further compared extraction methods using field-collected samples. We found that when extracting Bd DNA from cells in lab-created culture, the spin column extraction methods and PrepMan Ultra were equivalent, while the resin method detected higher Bd DNA quantities, especially at higher loads. However, when swabs from live animals were analyzed, low Bd quantities were more than twice as likely to be detected using a spin column extraction than with the PrepMan Ultra extraction method. All tested spin column extraction methods performed similarly across both field and lab samples. Samples containing low Bd quantities yielded inconsistent detection and quantification of Bd DNA copies regardless of extraction method. To manage imperfect detection of Bd, we suggest that presence/absence analyses are more informative than attempting to quantify Bd DNA when quantities are low. Overall, we recommend that a cost-benefit analysis of target species susceptibility and epidemiology be taken into consideration when designing an experiment to determine the most appropriate DNA extraction method to be used, because sometimes detecting low Bd quantities is imperative to the study, whereas in other situations, detecting low DNA quantities is less important.


Subject(s)
Chytridiomycota , Infections , Amphibians , Animals , DNA , Specimen Handling
15.
Cell Microbiol ; 21(10): e13089, 2019 10.
Article in English | MEDLINE | ID: mdl-31373151

ABSTRACT

Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a skin disease responsible for the global decline of amphibians. Frog species and populations can vary in susceptibility, but this phenomenon remains poorly understood. Here, we investigated serotonin in the skin of infected and uninfected frogs. In more susceptible frog populations, skin serotonin rose with increasing infection intensity, but decreased in later stages of the disease. The more resistant population maintained a basal level of skin serotonin. Serotonin inhibited both Bd sporangial growth and Jurkat lymphocyte proliferation in vitro. However, serotonin accumulates in skin granular glands, and this compartmentalisation may prevent inhibition of Bd growth in vivo. We suggest that skin serotonin increases in susceptible frogs due to pathogen excretion of precursor tryptophan, but that resistant frogs are able to control the levels of serotonin. Overall, the immunosuppressive effects of serotonin may contribute to the susceptibility of frogs to chytridiomycosis.


Subject(s)
Anura/microbiology , Chytridiomycota , Disease Susceptibility/veterinary , Mycoses/veterinary , Serotonin/metabolism , Skin Diseases/veterinary , Skin/metabolism , Animals , Anura/immunology , Anura/metabolism , Australia , Cell Proliferation/drug effects , Chytridiomycota/drug effects , Disease Susceptibility/metabolism , Disease Susceptibility/microbiology , Gas Chromatography-Mass Spectrometry , Mycoses/immunology , Mycoses/metabolism , Serotonin/pharmacology , Skin/chemistry , Skin/microbiology , Skin Diseases/metabolism , Sporangia/drug effects , Sporangia/growth & development , T-Lymphocytes/drug effects
16.
Physiol Biochem Zool ; 92(3): 339-348, 2019.
Article in English | MEDLINE | ID: mdl-30990770

ABSTRACT

Drought can heavily impact aquatic ecosystems. For amphibian species that rely on water availability for larval development, drought can have direct and indirect effects on larval survival and postmetamorphic fitness. Some amphibian species can accelerate the timing of metamorphosis to escape drying habitats through developmental plasticity. However, trade-offs associated with premature metamorphosis, such as reduced body size and altered immune function in the recently metamorphosed individual, may have downstream effects on susceptibility to disease. Here, we review the physiological mechanisms driving patterns in larval amphibian development under low water conditions. Specifically, we discuss drought-induced accelerated metamorphosis and how it may alter immune function, predisposing juvenile amphibians to infectious disease. In addition, we consider how these physiological and immunological adjustments could play out in a lethal disease system, amphibian chytridiomycosis. Last, we propose avenues for future research that adopt an ecoimmunological approach to evaluate the combined threats of drought and disease for amphibian populations.


Subject(s)
Amphibians/immunology , Droughts , Mycoses/veterinary , Ponds , Amphibians/microbiology , Animals , Chytridiomycota , Mycoses/immunology , Mycoses/microbiology
17.
Med Mycol ; 57(2): 204-214, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-29566178

ABSTRACT

Captive and wild amphibians are under threat of extinction from the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). The antifungal drug terbinafine (TBF) is used by pet owners to treat Bd-infected frogs; however, it is not widely used in academic or zoological institutions due to limited veterinary clinical trials. To assess TBF's efficacy, we undertook treatment trials and pharmacokinetic studies to investigate drug absorption and persistence in frog skin; and then we correlated these data to the minimal lethal concentrations (MLC) against Bd. Despite an initial reduction in zoospore load, the recommended treatment (five daily 5 min 0.01% TBF baths) was unable to cure experimentally infected alpine tree frogs and naturally infected common eastern froglets. In vitro and in vivo pharmacokinetics showed that absorbed TBF accumulates in frog skin with increased exposure, indicating its suitability for treating cutaneous pathogens via direct application. The MLC of TBF for zoosporangia was 100 µg/ml for 2 h, while the minimal inhibitory concentration was 2 µg/ml, suggesting that the drug concentration absorbed during 5 min treatments is not sufficient to cure high Bd burdens. With longer treatments of five daily 30 min baths, Bd clearance improved from 12.5% to 50%. A higher dose of 0.02% TBF resulted in 78% of animals cured; however, clearance was not achieved in all individuals due to low TBF skin persistence, as the half-life was less than 2 h. Therefore, the current TBF regime is not recommended as a universal treatment against Bd until protocols are optimized, such as with increased exposure frequency.


Subject(s)
Antifungal Agents/administration & dosage , Antifungal Agents/pharmacokinetics , Anura/microbiology , Chytridiomycota/drug effects , Mycoses/veterinary , Terbinafine/administration & dosage , Terbinafine/pharmacokinetics , Animals , Antifungal Agents/pharmacology , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Microbial Viability/drug effects , Mycoses/drug therapy , Skin/drug effects , Skin/metabolism , Skin/microbiology , Spores, Fungal/drug effects , Terbinafine/pharmacology , Treatment Outcome
18.
Dis Aquat Organ ; 131(2): 107-120, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30460917

ABSTRACT

In Australia, the cane toad Rhinella marina and chytrid fungus Batrachochytrium dendrobatidis (Bd) are examples of invasive species that have had dramatic impacts on native fauna. However, little is known about the interaction between Bd and cane toads. We aimed to explore the interaction of these 2 species in 3 parts. First, we collated data from the literature on Bd infection in wild cane toads. Second, we tested the susceptibility of recently metamorphosed cane toads to Bd infection. Finally, we modelled the distribution of the 2 species in Australia to identify where they overlap and, therefore, might interact. Through our data collation, we found that adult cane toads are infrequently infected and do not carry high infection burdens; however, our infection experiment showed that metamorphs are highly susceptible to infection and disease, but resistance appears to increase with increasing toad size. Niche modelling revealed overlapping distributions and the potential for cane toads to be affected by chytridiomycosis in the wild. While Bd can cause mortality in small juveniles in the laboratory, warm microhabitats used by wild toads likely prevent infection, and furthermore, high mortality of juveniles is unlikely to affect the adult populations because they are highly fecund. However, to demonstrate the impact of Bd on wild cane toad populations, targeted field studies are required to assess (1) the overall impact of chytridiomycosis on recruitment especially in cooler areas more favourable for Bd and (2) whether cane toad juveniles can amplify Bd exposure of native amphibian species in these areas.


Subject(s)
Aging/physiology , Body Size , Bufo marinus/microbiology , Chytridiomycota , Disease Susceptibility , Mycoses/veterinary , Animals , Australia/epidemiology , Introduced Species , Mycoses/epidemiology , Mycoses/microbiology
19.
BMC Ecol ; 18(1): 34, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30217158

ABSTRACT

BACKGROUND: The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been implicated as a primary cause of decline in many species around the globe. However, there are some species and populations that are known to become infected in the wild, yet declines have not been observed. Here we conducted a yearlong capture-mark-recapture study and a 2-year long disease monitoring study of northern cricket frogs, Acris crepitans, in the lowland subtropical forests of Louisiana. RESULTS: We found little evidence for an impact of Bd infection on survival; however, Bd infection did appear to cause sublethal effects, including increased capture probability in the field. CONCLUSIONS: Our study suggests that even in apparently stable populations, where Bd does not appear to cause mortality, there may be sublethal effects of infection that can impact a host population's dynamics and structure. Understanding and documenting such sublethal effects of infection on wild, seemingly stable populations is important, particularly for predicting future population declines.


Subject(s)
Anura , Chytridiomycota/physiology , Mycoses/veterinary , Animals , Louisiana , Mycoses/microbiology , Population Dynamics
20.
J Vis Exp ; (135)2018 05 16.
Article in English | MEDLINE | ID: mdl-29863673

ABSTRACT

Amphibians are experiencing a great loss in biodiversity globally and one of the major causes is the infectious disease chytridiomycosis. This disease is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which infects and disrupts frog epidermis; however, pathological changes have not been explicitly characterized. Apoptosis (programmed cell death) can be used by pathogens to damage host tissue, but can also be a host mechanism of disease resistance for pathogen removal. In this study, we quantify epidermal cell death of infected and uninfected animals using two different assays: terminal transferase-mediated dUTP nick end-labelling (TUNEL), and caspase 3/7. Using ventral, dorsal, and thigh skin tissue in the TUNEL assay, we observe cell death in the epidermal cells in situ of clinically infected animals and compare cell death with uninfected animals using fluorescent microscopy. In order to determine how apoptosis levels in the epidermis change over the course of infection we remove toe-tip samples fortnightly over an 8-week period, and use a caspase 3/7 assay with extracted proteins to quantify activity within the samples. We then correlate caspase 3/7 activity with infection load. The TUNEL assay is useful for localization of cell death in situ, but is expensive and time intensive per sample. The caspase 3/7 assay is efficient for large sample sizes and time course experiments. However, because frog toe tip biopsies are small there is limited extract available for sample standardization via protein quantification methods, such as the Bradford assay. Therefore, we suggest estimating skin surface area through photographic analysis of toe biopsies to avoid consuming extracts during sample standardization.


Subject(s)
Caspase 3/metabolism , Caspase 7/metabolism , Cell Death/genetics , Epithelial Cells/metabolism , In Situ Nick-End Labeling/methods , Transferases/genetics , Animals , Anura , Apoptosis , Epidermis
SELECTION OF CITATIONS
SEARCH DETAIL