Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Magn Reson Med ; 91(1): 413-423, 2024 01.
Article En | MEDLINE | ID: mdl-37676121

PURPOSE: In this study, we compared two triarylmethyl (TAM) spin probes, Ox071 and Ox063 for their efficacy in measuring tissue oxygen levels under hypoxic and normoxic conditions by R2 *-based EPR oximetry. METHODS: The R2 * dependencies on the spin probe concentration and oxygen level were calibrated using deoxygenated 1, 2, 5, and 10 mM standard solutions and 2 mM solutions saturated at 0%, 2%, 5%, 10%, and 21% of oxygen. For the hypoxic model, in vivo imaging of a MIA PaCa-2 tumor implanted in the hind leg of a mouse was performed on successive days by R2 *-based EPR oximetry using either Ox071 or Ox063. For the normoxic model, renal imaging of healthy athymic mice was performed using both spin probes. The 3D images were reconstructed by single point imaging and multi-gradient technique was used to determine R2 * maps. RESULTS: The signal intensities of Ox071 were approximately three times greater than that of Ox063 in the entire partial pressure of oxygen (pO2 ) range investigated. The histograms of the tumor pO2 images were skewed for both spin probes, and Ox071 showed more frequency counts at pO2 > 32 mm Hg. In the normoxic kidney model, there was a clear delineation between the high pO2 cortex and the low pO2 medulla regions. The histogram of high-resolution kidney oximetry image using Ox071 was nearly symmetrical and frequency counts were seen up to 55 mm Hg, which were missed in Ox063 imaging. CONCLUSION: As an oximetric probe, Ox071 has clear advantages over Ox063 in terms of sensitivity and the pO2 dynamic range.


Neoplasms , Oximetry , Mice , Animals , Electron Spin Resonance Spectroscopy/methods , Oximetry/methods , Oxygen , Imaging, Three-Dimensional
2.
Sci Rep ; 13(1): 14699, 2023 09 07.
Article En | MEDLINE | ID: mdl-37679461

In vivo deuterated water (2H2O) labeling leads to deuterium (2H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with 2H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic 2H2O administration. We initiated systemic 2H2O administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and 2H2O level of ~ 8% in total body water (TBW). Three schemas of 2H2O administration were tested: (1) starting at tumor seeding and continuing for 7 days of in vivo growth with imaging on day 7, (2) starting at tumor seeding and continuing for 14 days of in vivo growth with imaging on day 14, and (3) initiation of labeling following a week of in vivo tumor growth and continuing until imaging was performed on day 14. Deuterium chemical shift imaging of the tumor bearing limb and contralateral control was performed on either day 7 of 14 after tumor seeding, as described. After 14 days of in vivo tumor growth and 7 days of systemic labeling with 2H2O, a clear deuterium contrast was demonstrated between the xenografts and normal tissue. Labeling in the second week after tumor implantation afforded the highest contrast between neoplastic and healthy tissue in both models. Systemic labeling with 2H2O can be used to create imaging contrast between tumor and healthy issue, providing a non-radioactive method for in vivo cancer imaging.


Magnetic Resonance Imaging , Neoplasm Seeding , Humans , Animals , Mice , Heterografts , Deuterium , Transplantation, Heterologous , Administration, Cutaneous , Disease Models, Animal
3.
Antioxid Redox Signal ; 39(7-9): 432-444, 2023 09.
Article En | MEDLINE | ID: mdl-37051681

Aims: Pancreatic ductal adenocarcinomas (PDACs) form hypovascular and hypoxic tumors, which are difficult to treat with current chemotherapy regimens. Gemcitabine (GEM) is often used as a first-line treatment for PDACs but has issues with chemoresistance and penetration in the interior of the tumor. Evofosfamide, a hypoxia-activated prodrug, has been shown to be effective in combination with GEM, although the mechanism of each drug on the other has not been established. We used mouse xenografts from two cell lines (MIA Paca-2 and SU.86.86) with different tumor microenvironmental characteristics to probe the action of each drug on the other. Results: GEM treatment enhanced survival times in mice with SU.86.86 leg xenografts (hazard ratio [HR] = 0.35, p = 0.03) but had no effect on MIA Paca-2 mice (HR = 0.91, 95% confidence interval = 0.37-2.25, p = 0.84). Conversely, evofosfamide did not improve survival times in SU.86.86 mice to a statistically significant degree (HR = 0.57, p = 0.22). Electron paramagnetic resonance imaging showed that oxygenation worsened in MIA Paca-2 tumors when treated with GEM, providing a direct mechanism for the activation of the hypoxia-activated prodrug evofosfamide by GEM. Sublethal amounts of either treatment enhanced the toxicity of other treatment in vitro in SU.86.86 but not in MIA Paca-2. By the biomarker γH2AX, combination treatment increased the number of double-stranded DNA lesions in vitro for SU.86.86 but not MIA Paca-2. Innovation and Conclusion: The synergy between GEM and evofosfamide appears to stem from the dual action of GEMs effect on tumor vasculature and inhibition by GEM of the homologous recombination DNA repair process. Antioxid. Redox Signal. 39, 432-444.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Prodrugs , Humans , Animals , Mice , Gemcitabine , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Heterografts , Prodrugs/pharmacology , Prodrugs/therapeutic use , Recombinational DNA Repair , Cell Line, Tumor , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Hypoxia/drug therapy , Pancreatic Neoplasms
5.
Antioxid Redox Signal ; 36(1-3): 144-159, 2022 01.
Article En | MEDLINE | ID: mdl-34428981

Significance: Oxygen imaging techniques, which can probe the spatiotemporal heterogeneity of tumor oxygenation, could be of significant clinical utility in radiation treatment planning and in evaluating the effectiveness of hypoxia-activated prodrugs. To fulfill these goals, oxygen imaging techniques should be noninvasive, quantitative, and capable of serial imaging, as well as having sufficient temporal resolution to detect the dynamics of tumor oxygenation to distinguish regions of chronic and acute hypoxia. Recent Advances: No current technique meets all these requirements, although all have strengths in certain areas. The current status of positron emission tomography (PET)-based hypoxia imaging, oxygen-enhanced magnetic resonance imaging (MRI), 19F MRI, and electron paramagnetic resonance (EPR) oximetry are reviewed along with their strengths and weaknesses for planning hypoxia-guided, intensity-modulated radiation therapy and detecting treatment response for hypoxia-targeted prodrugs. Critical Issues: Spatial and temporal resolution emerges as a major concern for these areas along with specificity and quantitative response. Although multiple oxygen imaging techniques have reached the investigative stage, clinical trials to test the therapeutic effectiveness of hypoxia imaging have been limited. Future Directions: Imaging elements of the redox environment besides oxygen by EPR and hyperpolarized MRI may have a significant impact on our understanding of the basic biology of the reactive oxygen species response and may extend treatment possibilities.


Hypoxia , Positron-Emission Tomography , Electron Spin Resonance Spectroscopy/methods , Humans , Magnetic Resonance Imaging/methods , Oxygen
6.
ACS Chem Biol ; 16(11): 2144-2150, 2021 11 19.
Article En | MEDLINE | ID: mdl-34554724

Alpha-ketoglutarate (α-KG) is a key metabolite and signaling molecule in cancer cells, but the low permeability of α-KG limits the study of α-KG mediated effects in vivo. Recently, cell-permeable monoester and diester α-KG derivatives have been synthesized for use in vivo, but many of these derivatives are not compatible for use in hyperpolarized carbon-13 nuclear magnetic resonance spectroscopy (HP-13C-MRS). HP-13C-MRS is a powerful technique that has been used to noninvasively trace labeled metabolites in real time. Here, we show that using diethyl-[1-13C]-α-KG as a probe in HP-13C-MRS allows for noninvasive tracing of α-KG metabolism in vivo.


Cell Membrane/drug effects , Glutamic Acid/metabolism , Glutamine/metabolism , Ketoglutaric Acids/metabolism , Animals , Biological Transport , Carbon Isotopes , Cell Line, Tumor , Glutamic Acid/genetics , Glutamine/genetics , HCT116 Cells , Humans , Mice , Mice, Nude , Neoplasms, Experimental , Permeability
7.
NMR Biomed ; 34(11): e4588, 2021 11.
Article En | MEDLINE | ID: mdl-34263489

Isocitrate dehydrogenase 1 (IDH1) mutations that generate the oncometabolite 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG) have been identified in many types of tumors and are an important prognostic factor in gliomas. 2-HG production can be determined by hyperpolarized carbon-13 magnetic resonance spectroscopy (HP-13 C-MRS) using [1-13 C]-α-KG as a probe, but peak contamination from naturally occurring [5-13 C]-α-KG overlaps with the [1-13 C]-2-HG peak. Via a newly developed oxidative-Stetter reaction, [1-13 C-5-12 C]-α-KG was synthesized. α-KG metabolism was measured via HP-13 C-MRS using [1-13 C-5-12 C]-α-KG as a probe. [1-13 C-5-12 C]-α-KG was synthesized in high yields, and successfully eliminated the signal from C5 of α-KG in the HP-13 C-MRS spectra. In HCT116 IDH1 R132H cells, [1-13 C-5-12 C]-α-KG allowed for unimpeded detection of [1-13 C]-2-HG. 12 C-enrichment represents a novel method to circumvent spectral overlap, and [1-13 C-5-12 C]-α-KG shows promise as a probe to study IDH1 mutant tumors and α-KG metabolism.


Carbon-13 Magnetic Resonance Spectroscopy , Glutarates/analysis , Ketoglutaric Acids/metabolism , HCT116 Cells , Humans
8.
Magn Reson Med ; 86(5): 2497-2511, 2021 11.
Article En | MEDLINE | ID: mdl-34173268

PURPOSE: To improve hyperpolarized 13 C (HP-13 C) MRI by image denoising with a new approach, patch-based higher-order singular value decomposition (HOSVD). METHODS: The benefit of using a patch-based HOSVD method to denoise dynamic HP-13 C MR imaging data was investigated. Image quality and the accuracy of quantitative analyses following denoising were evaluated first using simulated data of [1-13 C]pyruvate and its metabolic product, [1-13 C]lactate, and compared the results to a global HOSVD method. The patch-based HOSVD method was then applied to healthy volunteer HP [1-13 C]pyruvate EPI studies. Voxel-wise kinetic modeling was performed on both non-denoised and denoised data to compare the number of voxels quantifiable based on SNR criteria and fitting error. RESULTS: Simulation results demonstrated an 8-fold increase in the calculated SNR of [1-13 C]pyruvate and [1-13 C]lactate with the patch-based HOSVD denoising. The voxel-wise quantification of kPL (pyruvate-to-lactate conversion rate) showed a 9-fold decrease in standard errors for the fitted kPL after denoising. The patch-based denoising performed superior to the global denoising in recovering kPL information. In volunteer data sets, [1-13 C]lactate and [13 C]bicarbonate signals became distinguishable from noise across captured time points with over a 5-fold apparent SNR gain. This resulted in >3-fold increase in the number of voxels quantifiable for mapping kPB (pyruvate-to-bicarbonate conversion rate) and whole brain coverage for mapping kPL . CONCLUSIONS: Sensitivity enhancement provided by this denoising significantly improved quantification of metabolite dynamics and could benefit future studies by improving image quality, enabling higher spatial resolution, and facilitating the extraction of metabolic information for clinical research.


Brain , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Computer Simulation , Humans , Lactic Acid , Pyruvic Acid , Signal-To-Noise Ratio
9.
Sci Rep ; 11(1): 12155, 2021 06 09.
Article En | MEDLINE | ID: mdl-34108512

Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.


Acetylcysteine/metabolism , Brain/metabolism , Carbon Isotopes/analysis , Glutathione/metabolism , Pancreatic Neoplasms/pathology , Animals , Apoptosis , Cell Proliferation , Humans , Magnetic Resonance Imaging , Mice , Oxidation-Reduction , Pancreatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
Int J Mol Sci ; 22(9)2021 May 03.
Article En | MEDLINE | ID: mdl-34063570

Understanding the global metabolic changes during the senescence of tumor cells can have implications for developing effective anti-cancer treatment strategies. Ionizing radiation (IR) was used to induce senescence in a human colon cancer cell line HCT-116 to examine secretome and metabolome profiles. Control proliferating and senescent cancer cells (SCC) exhibited distinct morphological differences and expression of senescent markers. Enhanced secretion of pro-inflammatory chemokines and IL-1, anti-inflammatory IL-27, and TGF-ß1 was observed in SCC. Significantly reduced levels of VEGF-A indicated anti-angiogenic activities of SCC. Elevated levels of tissue inhibitors of matrix metalloproteinases from SCC support the maintenance of the extracellular matrix. Adenylate and guanylate energy charge levels and redox components NAD and NADP and glutathione were maintained at near optimal levels indicating the viability of SCC. Significant accumulation of pyruvate, lactate, and suppression of the TCA cycle in SCC indicated aerobic glycolysis as the predominant energy source for SCC. Levels of several key amino acids decreased significantly, suggesting augmented utilization for protein synthesis and for use as intermediates for energy metabolism in SCC. These observations may provide a better understanding of cellular senescence basic mechanisms in tumor tissues and provide opportunities to improve cancer treatment.


Cellular Senescence/genetics , Colonic Neoplasms/genetics , Metabolic Networks and Pathways/genetics , Metabolome/genetics , Cellular Senescence/radiation effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Interleukin-1/genetics , Interleukin-27/genetics , Metabolic Networks and Pathways/radiation effects , Metabolome/radiation effects , Radiation, Ionizing , Transforming Growth Factor beta1/genetics , Vascular Endothelial Growth Factor A/genetics
11.
NMR Biomed ; 34(7): e4514, 2021 07.
Article En | MEDLINE | ID: mdl-33939204

Dynamic nuclear polarization (DNP) of 13 C-labeled substrates enables the use of magnetic resonance imaging (MRI) to monitor specific enzymatic reactions in tumors and offers an opportunity to investigate these differences. In this study, DNP-MRI chemical shift imaging with hyperpolarized [1-13 C] pyruvate was conducted to evaluate the metabolic change in glycolytic profiles after radiation of two glioma stem-like cell-derived gliomas (GBMJ1 and NSC11) and an adherent human glioblastoma cell line (U251) in an orthotopic xenograft mouse model. The DNP-MRI showed an increase in Lac/Pyr at 6 and 16 h after irradiation (18% ± 4% and 14% ± 3%, respectively; mean ± SEM) compared with unirradiated controls in GBMJ1 tumors, whereas no significant change was observed in U251 and NSC11 tumors. Metabolomic analysis likewise showed a significant increase in lactate in GBMJ1 tumors at 16 h. An immunoblot assay showed upregulation of lactate dehydrogenase-A expression in GBMJ1 following radiation exposure, consistent with DNP-MRI and metabolomic analysis. In conclusion, our preclinical study demonstrates that the DNP-MRI technique has the potential to be a powerful diagnostic method with which to evaluate GBM tumor metabolism before and after radiation in the clinical setting.


Carbon-13 Magnetic Resonance Spectroscopy , Glioblastoma/metabolism , Glioblastoma/radiotherapy , Animals , Cell Line, Tumor , Glioblastoma/diagnostic imaging , Humans , Lactate Dehydrogenase 5/metabolism , Lactic Acid/metabolism , Magnetic Resonance Imaging , Metabolomics , Mice, Nude , Pyruvic Acid/metabolism
12.
Cancer Res ; 81(13): 3693-3705, 2021 07 01.
Article En | MEDLINE | ID: mdl-33837042

Immune checkpoint blockade (ICB) has become a standard therapy for several cancers, however, the response to ICB is inconsistent and a method for noninvasive assessment has not been established to date. To investigate the capability of multimodal imaging to evaluate treatment response to ICB therapy, hyperpolarized 13C MRI using [1-13C] pyruvate and [1,4-13C2] fumarate and dynamic contrast enhanced (DCE) MRI was evaluated to detect early changes in tumor glycolysis, necrosis, and intratumor perfusion/permeability, respectively. Mouse tumor models served as platforms for high (MC38 colon adenocarcinoma) and low (B16-F10 melanoma) sensitivity to dual ICB of PD-L1 and CTLA4. Glycolytic flux significantly decreased following treatment only in the less sensitive B16-F10 tumors. Imaging [1,4-13C2] fumarate conversion to [1,4-13C2] malate showed a significant increase in necrotic cell death following treatment in the ICB-sensitive MC38 tumors, with essentially no change in B16-F10 tumors. DCE-MRI showed significantly increased perfusion/permeability in MC38-treated tumors, whereas a similar, but statistically nonsignificant, trend was observed in B16-F10 tumors. When tumor volume was also taken into consideration, each imaging biomarker was linearly correlated with future survival in both models. These results suggest that hyperpolarized 13C MRI and DCE MRI may serve as useful noninvasive imaging markers to detect early response to ICB therapy. SIGNIFICANCE: Hyperpolarized 13C MRI and dynamic contrast enhanced MRI in murine tumor models provide useful insight into evaluating early response to immune checkpoint blockade therapy.See related commentary by Cullen and Keshari, p. 3444.


Colonic Neoplasms/pathology , Glycolysis , Immune Checkpoint Inhibitors/pharmacology , Magnetic Resonance Imaging/methods , Melanoma, Experimental/pathology , Molecular Imaging/methods , Pyruvic Acid/metabolism , Animals , Apoptosis , Cell Proliferation , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Female , Humans , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Acad Radiol ; 28(2): 199-207, 2021 02.
Article En | MEDLINE | ID: mdl-32143993

RATIONALE AND OBJECTIVE: The Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) published a set of minimum technical standards (MTS) to improve image quality and reduce variability in multiparametric prostate MRI. The effect of PIRADSv2 MTS on image quality has not been validated. We aimed to determine whether adherence to PI-RADSv2 MTS improves study adequacy and perceived quality. MATERIALS AND METHODS: Sixty-two prostate MRI examinations including T2 weighted (T2W) and diffusion weighted image (DWI) consecutively referred to our center from 62 different institutions within a 12-month period (September 2017 to September 2018) were included. Six readers assessed images as adequate or inadequate for use in PCa detection and a numerical image quality ranking was given using a 1-5 scale. The PI-RADSv2 MTS were synthesized into sets of seven and 10 rules for T2W and DWI, respectively. Image adherence was assessed using Digital Imaging and Communications in Medicine (DICOM) metadata. Statistical analysis of survey results and image adherence was performed based on reader quality scoring (Kendall Rank tau-b) and reader adequate scoring (Wilcoxon test for association) for T2 and DWI quality assessment. RESULTS: Out of 62 images, 52 (83%) T2W and 38 (61%) DWIs were rated to be adequate by a majority of readers. Reader adequacy scores showed no significant association with adherence to PI-RADSv2. There was a weak (tau-b = 0.22) but significant (p value = 0.01) correlation between adherence to PIRADSv2 MTS and image quality for T2W. Studies following all PI-RADSv2 T2W rules achieved a higher median average quality score (3.58 for 7/7 vs. 3.0 for <7/7, p = 0.012). No statistical relationship with PI-RADSv2 MTS adherence and DWI quality was found. CONCLUSION: Among 62 sites performing prostate MRI, few were considered of high quality, but the majority were considered adequate. DWI showed considerably lower rates of adequate studies in the sample. Adherence to PI-RADSv2 MTS did not increase the likelihood of having a qualitatively adequate T2W or DWI.


Magnetic Resonance Imaging , Prostatic Neoplasms , Diffusion Magnetic Resonance Imaging , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Reference Standards , Retrospective Studies
14.
Antioxid Redox Signal ; 35(11): 904-915, 2021 10 10.
Article En | MEDLINE | ID: mdl-32787454

Aims: In hypoxic tumor microenvironments, the strongly reducing redox environment reduces evofosfamide (TH-302) to release a cytotoxic bromo-isophosphoramide (Br-IPM) moiety. This drug therefore preferentially attacks hypoxic regions in tumors where other standard anticancer treatments such as chemotherapy and radiation therapy are often ineffective. Various combination therapies with evofosfamide have been proposed and tested in preclinical and clinical settings. However, the treatment effect of evofosfamide monotherapy on tumor hypoxia has not been fully understood, partly due to the lack of quantitative methods to assess tumor pO2in vivo. Here, we use quantitative pO2 imaging by electron paramagnetic resonance (EPR) to evaluate the change in tumor hypoxia in response to evofosfamide treatment using two pancreatic ductal adenocarcinoma xenograft models: MIA Paca-2 tumors responding to evofosfamide and Su.86.86 tumors that do not respond. Results: EPR imaging showed that oxygenation improved globally after evofosfamide treatment in hypoxic MIA Paca-2 tumors, in agreement with the ex vivo results obtained from hypoxia staining by pimonidazole and in apparent contrast to the decrease in Ktrans observed in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI). Innovations: The observation that evofosfamide not only kills the hypoxic region of the tumor but also improves oxygenation in the residual tumor regions provides a rationale for combination therapies using radiation and antiproliferatives post evofosfamide for improved outcomes. Conclusion: This study suggests that reoxygenation after evofosfamide treatment is due to decreased oxygen demand rather than improved perfusion. Following the change in pO2 after treatment may therefore yield a way of monitoring treatment response. Antioxid. Redox Signal. 35, 904-915.


Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal/therapy , Cell Hypoxia/drug effects , Nitroimidazoles/pharmacology , Pancreatic Neoplasms/therapy , Phosphoramide Mustards/pharmacology , Prodrugs/pharmacology , Animals , Antineoplastic Agents/chemistry , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Mice , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Nitroimidazoles/chemistry , Oxidation-Reduction , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphoramide Mustards/chemistry , Prodrugs/chemistry
15.
Magn Reson Med ; 85(1): 42-48, 2021 01.
Article En | MEDLINE | ID: mdl-32697878

PURPOSE: In dynamic nuclear polarization (DNP), the solution needs to form a glass to attain significant levels of polarization in reasonable time periods. Molecules that do not form glasses by themselves are often mixed with glass forming excipients. Although glassing agents are often essential in DNP studies, they have the potential to perturb the metabolic measurements that are being studied. Glycerol, the glassing agent of choice for in vivo DNP studies, is effective in reducing ice crystal formation during freezing, but is rapidly metabolized, potentially altering the redox and adenosine triphosphate balance of the system. METHODS: DNP buildup curves of 13 C urea and alanine with OX063 in the presence of trehalose, glycerol, and other polyol excipients were measured as a function of concentration. T1 and Tm relaxation times for OX063 in the presence of trehalose were measured by EPR. RESULTS: Approximately 15-20 wt% trehalose gives a glass that polarizes samples more rapidly than the commonly used 60%-wt formulation of glycerol and yields similar polarization levels within clinically relevant timeframes. CONCLUSIONS: Trehalose may be an attractive biologically inert alternative to glycerol for situations where there may be concerns about glycerol's glucogenic potential and possible alteration of the adenosine triphosphate/adenosine diphosphate and redox balance.


Glycerol , Heterocyclic Compounds , Trehalose , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
16.
Proteins ; 88(12): 1648-1659, 2020 12.
Article En | MEDLINE | ID: mdl-32683793

Insulin has long been served as a model for protein aggregation, both due to the importance of aggregation in the manufacture of insulin and because the structural biology of insulin has been extensively characterized. Despite intensive study, details about the initial triggers for aggregation have remained elusive at the molecular level. We show here that at acidic pH, the aggregation of insulin is likely initiated by a partially folded monomeric intermediate. High-resolution structures of the partially folded intermediate show that it is coarsely similar to the initial monomeric structure but differs in subtle details-the A chain helices on the receptor interface are more disordered and the B chain helix is displaced from the C-terminal A chain helix when compared to the stable monomer. The result of these movements is the creation of a hydrophobic cavity in the center of the protein that may serve as nucleation site for oligomer formation. Knowledge of this transition may aid in the engineering of insulin variants that retain the favorable pharamacokinetic properties of monomeric insulin but are more resistant to aggregation.


Insulin/chemistry , Pancreas/metabolism , Protein Folding , Protein Multimerization , Animals , Cattle , Hydrophobic and Hydrophilic Interactions , Insulin/metabolism , Models, Molecular , Protein Conformation
17.
Magn Reson Med ; 84(6): 3351-3365, 2020 12.
Article En | MEDLINE | ID: mdl-32501614

PURPOSE: With the initiation of human hyperpolarized 13 C (HP-13 C) trials at multiple sites and the development of improved acquisition methods, there is an imminent need to maximally extract diagnostic information to facilitate clinical interpretation. This study aims to improve human HP-13 C MR spectroscopic imaging through means of Tensor Rank truncation-Image enhancement (TRI) and optimal receiver combination (ORC). METHODS: A data-driven processing framework for dynamic HP 13 C MR spectroscopic imaging (MRSI) was developed. Using patient data sets acquired with both multichannel arrays and single-element receivers from the brain, abdomen, and pelvis, we examined the theory and application of TRI, as well as 2 ORC techniques: whitened singular value decomposition (WSVD) and first-point phasing. Optimal conditions for TRI were derived based on bias-variance trade-off. RESULTS: TRI and ORC techniques together provided a 63-fold mean apparent signal-to-noise ratio (aSNR) gain for receiver arrays and a 31-fold gain for single-element configurations, which particularly improved quantification of the lower-SNR-[13 C]bicarbonate and [1-13 C]alanine signals that were otherwise not detectable in many cases. Substantial SNR enhancements were observed for data sets that were acquired even with suboptimal experimental conditions, including delayed (114 s) injection (8× aSNR gain solely by TRI), or from challenging anatomy or geometry, as in the case of a pediatric patient with brainstem tumor (597× using combined TRI and WSVD). Improved correlation between elevated pyruvate-to-lactate conversion, biopsy-confirmed cancer, and mp-MRI lesions demonstrated that TRI recovered quantitative diagnostic information. CONCLUSION: Overall, this combined approach was effective across imaging targets and receiver configurations and could greatly benefit ongoing and future HP 13 C MRI research through major aSNR improvements.


Image Enhancement , Magnetic Resonance Imaging , Carbon Isotopes , Child , Humans , Magnetic Resonance Spectroscopy , Pyruvic Acid , Signal-To-Noise Ratio
18.
Cancer Res ; 80(11): 2087-2093, 2020 06 01.
Article En | MEDLINE | ID: mdl-32245793

Molecular imaging approaches for metabolic and physiologic imaging of tumors have become important for treatment planning and response monitoring. However, the relationship between the physiologic and metabolic aspects of tumors is not fully understood. Here, we developed new hyperpolarized MRI and electron paramagnetic resonance imaging procedures that allow more direct assessment of tumor glycolysis and oxygenation status quantitatively. We investigated the spatial relationship between hypoxia, glucose uptake, and glycolysis in three human pancreatic ductal adenocarcinoma tumor xenografts with differing physiologic and metabolic characteristics. At the bulk tumor level, there was a strong positive correlation between 18F-FDG-PET and lactate production, while pO2 was inversely related to lactate production and 18F-2-fluoro-2-deoxy-D-glucose (18F-FDG) uptake. However, metabolism was not uniform throughout the tumors, and the whole tumor results masked different localizations that became apparent while imaging. 18F-FDG uptake negatively correlated with pO2 in the center of the tumor and positively correlated with pO2 on the periphery. In contrast to pO2 and 18F-FDG uptake, lactate dehydrogenase activity was distributed relatively evenly throughout the tumor. The heterogeneity revealed by each measure suggests a multimodal molecular imaging approach can improve tumor characterization, potentially leading to better prognostics in cancer treatment. SIGNIFICANCE: Novel multimodal molecular imaging techniques reveal the potential of three interrelated imaging biomarkers to profile the tumor microenvironment and interrelationships of hypoxia, glucose uptake, and glycolysis.


Carcinoma, Pancreatic Ductal/metabolism , Glucose/metabolism , Oxygen/metabolism , Pancreatic Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/diagnostic imaging , Cell Line, Tumor , Electron Spin Resonance Spectroscopy/methods , Fluorodeoxyglucose F18 , Glycolysis , Heterografts , Humans , Mice , Molecular Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Partial Pressure , Positron-Emission Tomography/methods , Radiopharmaceuticals , Tumor Microenvironment
19.
Cell Rep ; 30(6): 1798-1810.e4, 2020 02 11.
Article En | MEDLINE | ID: mdl-32049011

The reliance of many cancers on aerobic glycolysis has stimulated efforts to develop lactate dehydrogenase (LDH) inhibitors. However, despite significant efforts, LDH inhibitors (LDHi) with sufficient specificity and in vivo activity to determine whether LDH is a feasible drug target are lacking. We describe an LDHi with potent, on-target, in vivo activity. Using hyperpolarized magnetic resonance spectroscopic imaging (HP-MRSI), we demonstrate in vivo LDH inhibition in two glycolytic cancer models, MIA PaCa-2 and HT29, and we correlate depth and duration of LDH inhibition with direct anti-tumor activity. HP-MRSI also reveals a metabolic rewiring that occurs in vivo within 30 min of LDH inhibition, wherein pyruvate in a tumor is redirected toward mitochondrial metabolism. Using HP-MRSI, we show that inhibition of mitochondrial complex 1 rapidly redirects tumor pyruvate toward lactate. Inhibition of both mitochondrial complex 1 and LDH suppresses metabolic plasticity, causing metabolic quiescence in vitro and tumor growth inhibition in vivo.


Drug Therapy, Combination/methods , L-Lactate Dehydrogenase/antagonists & inhibitors , Neoplasms/immunology , Animals , Humans , Mice , Neoplasms/drug therapy
20.
Elife ; 82019 08 13.
Article En | MEDLINE | ID: mdl-31408004

Metabolic differences among and within tumors can be an important determinant in cancer treatment outcome. However, methods for determining these differences non-invasively in vivo is lacking. Using pancreatic ductal adenocarcinoma as a model, we demonstrate that tumor xenografts with a similar genetic background can be distinguished by their differing rates of the metabolism of 13C labeled glucose tracers, which can be imaged without hyperpolarization by using newly developed techniques for noise suppression. Using this method, cancer subtypes that appeared to have similar metabolic profiles based on steady state metabolic measurement can be distinguished from each other. The metabolic maps from 13C-glucose imaging localized lactate production and overall glucose metabolism to different regions of some tumors. Such tumor heterogeneity would not be not detectable in FDG-PET.


Adenocarcinoma/diagnostic imaging , Carbon Isotopes/administration & dosage , Carcinoma, Pancreatic Ductal/diagnostic imaging , Glucose/metabolism , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/diagnostic imaging , Adenocarcinoma/classification , Adenocarcinoma/physiopathology , Animals , Carcinoma, Pancreatic Ductal/classification , Carcinoma, Pancreatic Ductal/physiopathology , Disease Models, Animal , Mice , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/physiopathology
...