Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Rhythms ; 34(4): 380-390, 2019 08.
Article in English | MEDLINE | ID: mdl-31216910

ABSTRACT

The circadian clock controls 24-h biological rhythms in our body, influencing many time-related activities such as sleep and wake. The simplest circadian clock is found in cyanobacteria, with the proteins KaiA, KaiB, and KaiC generating a self-sustained circadian oscillation of KaiC phosphorylation and dephosphorylation. KaiA activates KaiC phosphorylation by binding the A-loop of KaiC, while KaiB attenuates the phosphorylation by sequestering KaiA from the A-loop. Structural analysis revealed that magnesium regulates the phosphorylation and dephosphorylation of KaiC by dissociating from and associating with catalytic Glu residues that activate phosphorylation and dephosphorylation, respectively. High magnesium causes KaiC to dephosphorylate, whereas low magnesium causes KaiC to phosphorylate. KaiC alone behaves as an hourglass timekeeper when the magnesium concentration is alternated between low and high levels in vitro. We suggest that a magnesium-based hourglass timekeeping system may have been used by ancient cyanobacteria before magnesium homeostasis was established.


Subject(s)
Bacterial Proteins/physiology , Circadian Rhythm/physiology , Cyanobacteria/physiology , Magnesium/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cloning, Molecular , Cyanobacteria/metabolism , Molecular Dynamics Simulation , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...