Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.827
Filter
1.
Am J Hum Genet ; 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39288765

ABSTRACT

Efforts to implement and evaluate genome sequencing (GS) as a screening tool for newborns and infants are expanding worldwide. The first iteration of the BabySeq Project (2015-2019), a randomized controlled trial of newborn sequencing, produced novel evidence on medical, behavioral, and economic outcomes. The second iteration of BabySeq, which began participant recruitment in January 2023, examines GS outcomes in a larger, more diverse cohort of more than 500 infants up to one year of age recruited from pediatric clinics at several sites across the United States. The trial aims for families who self-identify as Black/African American or Hispanic/Latino to make up more than 50% of final enrollment, and key aspects of the trial design were co-developed with a community advisory board. All enrolled families receive genetic counseling and a family history report. Half of enrolled infants are randomized to receive GS with comprehensive interpretation of pathogenic and likely pathogenic variants in more than 4,300 genes associated with childhood-onset and actionable adult-onset conditions, as well as larger-scale chromosomal copy number variants classified as pathogenic or likely pathogenic. GS result reports include variants associated with disease (Mendelian disease risks) and carrier status of autosomal-recessive and X-linked disorders. Investigators evaluate the utility and impacts of implementing a GS screening program in a diverse cohort of infants using medical record review and longitudinal parent surveys. In this perspective, we describe the rationale for the second iteration of the BabySeq Project, the outcomes being assessed, and the key decisions collaboratively made by the study team and community advisory board.

2.
Front Immunol ; 15: 1429912, 2024.
Article in English | MEDLINE | ID: mdl-39315105

ABSTRACT

The thymus is the central organ involved with T-cell development and the production of naïve T cells. During normal aging, the thymus undergoes marked involution, reducing naïve T-cell output and resulting in a predominance of long-lived memory T cells in the periphery. Outside of aging, systemic stress responses that induce corticosteroids (CS), or other insults such as radiation exposure, induce thymocyte apoptosis, resulting in a transient acute thymic involution with subsequent recovery occurring after cessation of the stimulus. Despite the increasing utilization of immunostimulatory regimens in cancer, effects on the thymus and naïve T cell output have not been well characterized. Using both mouse and human systems, the thymic effects of systemic immunostimulatory regimens, such as high dose IL-2 (HD IL-2) with or without agonistic anti-CD40 mAbs and acute primary viral infection, were investigated. These regimens produced a marked acute thymic involution in mice, which correlated with elevated serum glucocorticoid levels and a diminishment of naïve T cells in the periphery. This effect was transient and followed with a rapid thymic "rebound" effect, in which an even greater quantity of thymocytes was observed compared to controls. Similar results were observed in humans, as patients receiving HD IL-2 treatment for cancer demonstrated significantly increased cortisol levels, accompanied by decreased peripheral blood naïve T cells and reduced T-cell receptor excision circles (TRECs), a marker indicative of recent thymic emigrants. Mice adrenalectomized prior to receiving immunotherapy or viral infection demonstrated protection from this glucocorticoid-mediated thymic involution, despite experiencing a substantially higher inflammatory cytokine response and increased immunopathology. Investigation into the effects of immunostimulation on middle aged (7-12 months) and advance aged (22-24 months) mice, which had already undergone significant thymic involution and had a diminished naïve T cell population in the periphery at baseline, revealed that even further involution was incurred. Thymic rebound hyperplasia, however, only occurred in young and middle-aged recipients, while advance aged not only lacked this rebound hyperplasia, but were entirely absent of any indication of thymic restoration. This coincided with prolonged deficits in naïve T cell numbers in advanced aged recipients, further skewing the already memory dominant T cell pool. These results demonstrate that, in both mice and humans, systemic immunostimulatory cancer therapies, as well as immune challenges like subacute viral infections, have the potential to induce profound, but transient, glucocorticoid-mediated thymic involution and substantially reduced thymic output, resulting in the reduction of peripheral naive T cells. This can then be followed by a marked rebound effect with naïve T cell restoration, events that were shown not to occur in advanced-aged mice.


Subject(s)
Glucocorticoids , Thymus Gland , Animals , Thymus Gland/immunology , Thymus Gland/drug effects , Mice , Humans , Glucocorticoids/therapeutic use , Glucocorticoids/pharmacology , Female , Male , Aged , Aging/immunology , Middle Aged , Interleukin-2/metabolism , Adult , Thymocytes/immunology , Thymocytes/metabolism , Thymus Hyperplasia/immunology , Mice, Inbred C57BL , Immunization , Hyperplasia
3.
Int J Mol Sci ; 25(17)2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39273646

ABSTRACT

Corneal transparency and avascularity are essential for vision. The avascular cornea transitions into the vascularized conjunctiva at the limbus. Here, we explore a limbal stromal cell sub-population that expresses ABCB5 and has mesenchymal stem cell characteristics. Human primary corneal stromal cells were enriched for ABCB5 by using FACS sorting. ABCB5+ cells expressed the MSC markers CD90, CD73, and CD105. ABCB5+ but not ABCB5- cells from the same donor displayed evidence of pluripotency with a significantly higher colony-forming efficiency and the ability of trilineage differentiation (osteogenic, adipogenic, and chondrogenic). The ABCB5+ cell secretome demonstrated lower levels of the pro-inflammatory protein MIF (macrophage migration inhibitory factor) as well as of the pro-(lymph)angiogenic growth factors VEGFA and VEGFC, which correlated with reduced proliferation of Jurkat cells co-cultured with ABCB5+ cells and decreased proliferation of blood and lymphatic endothelial cells cultured in ABCB5+ cell-conditioned media. These data support the hypothesis that ABCB5+ limbal stromal cells are a putative MSC population with potential anti-inflammatory and anti-(lymph)angiogenic effects. The therapeutic modulation of ABCB5+ limbal stromal cells may prevent cornea neovascularization and inflammation and, if transplanted to other sites in the body, provide similar protective properties to other tissues.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B , Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Vascular Endothelial Growth Factor A/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Cell Differentiation , Vascular Endothelial Growth Factor C/metabolism , Cell Proliferation , Limbus Corneae/metabolism , Limbus Corneae/cytology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Jurkat Cells , Cells, Cultured , Stromal Cells/metabolism , Coculture Techniques , Endothelial Cells/metabolism
4.
J Clin Invest ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39264847

ABSTRACT

Current research reports that lactate affects Treg metabolism, although the precise mechanism has only been partially elucidated. In this study, we presented evidence demonstrating that elevated lactate levels enhanced cell proliferation, suppressive capabilities, and oxidative phosphorylation (OXPHOS) in human Tregs. The expression levels of Monocarboxylate Transporters 1/2/4 (MCT1/2/4) regulate intracellular lactate concentration, thereby influencing the varying responses observed in naive Tregs and memory Tregs. Through mitochondrial isolation, sequencing, and analysis of human Tregs, we determined that Alpha-1,3-Mannosyl-Glycoprotein 2-Beta-N-Acetylglucosaminyltransferase (MGAT1) served as the pivotal driver initiating downstream N-glycosylation events involving progranulin (GRN) and hypoxia-upregulated 1 (HYOU1), consequently enhancing Treg OXPHOS. The mechanism by which MGAT1 was upregulated in mitochondria depended on elevated intracellular lactate that promoted the activation of XBP1s, which, in turn, supported MGAT1 transcription as well as the interaction of lactate with the translocase of the mitochondrial outer membrane 70 (TOM70) import receptor, facilitating MGAT1 translocation into mitochondria. Pre-treatment of Tregs with lactate reduced mortality in a xenogeneic graft-versus-host disease (GvHD) model. Together, these findings underscored the active regulatory role of lactate in human Treg metabolism through the upregulation of MGAT1 transcription and its facilitated translocation into the mitochondria.

5.
Nat Commun ; 15(1): 7936, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261449

ABSTRACT

Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being traditionally viewed as unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.


Subject(s)
Anti-Bacterial Agents , Chloramphenicol , Escherichia coli , Escherichia coli/drug effects , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Chloramphenicol/pharmacology , Azithromycin/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/drug effects
6.
Genome Res ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39299904

ABSTRACT

Variant detection from long-read genome sequencing (lrGS) has proven to be more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences HiFi technology on 96 short-read-negative probands with rare diseases that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, nine of which (8/96, ~9.4%) harbored pathogenic or likely pathogenic variants. Nine probands (~9.4%) had variants that were accurately called in both srGS and lrGS and represent changes to clinical interpretation, mostly from recently published gene-disease associations. Seven cases included variants that were only correctly interpreted in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older srGS data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.

7.
J Psychopharmacol ; 38(9): 789-797, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39219452

ABSTRACT

BACKGROUND: Anxiety and depression cause major detriment to the patient, family, and society - particularly in treatment-resistant (TR) cases, which are highly prevalent. TR prevalence may be due to current diagnoses being based not on biological measures but on symptom lists that suffer from clinical subjectivity, variation in symptom presentation, and comorbidity. AIMS: Goal-conflict-specific rhythmicity (GCSR) measured using the Stop-Signal Task (SST) may provide the first neural biomarker for an anxiety process and disorder. This GCSR has been validated with selective drugs for anxiety. So, we proposed that GCSR could differ between TR and non-TR individuals and do so differently between those diagnoses normally sensitive to selective anxiolytics and those not. METHODS: We recorded electroencephalograms (EEG) from 20 TR participants (4 GAD, 5 SAD and 11 MDD) and 24 non-TR participants (4 GAD, 5 SAD and 15 Comorbid GAD/MDD (GMD)) while they performed the SST. RESULTS: There was significant positive GCSR in all groups except the GAD-TR group. GAD-TR lacked GCSR in the low-frequency range. However, TR had little effect in SAD or MDD/GMD populations with apparent increases not decreases. CONCLUSIONS: Overall, these results suggest that GAD may occur in two forms: one resulting from excessive GCSR and so being drug sensitive, and the other resulting from some other mechanism and so being TR. In SAD and MDD groups, heightened GCSR could be a consequence rather than the cause, driven by mechanisms that are normally more sensitive to non-selective panicolytic antidepressants.


Subject(s)
Anxiety Disorders , Biomarkers , Depressive Disorder, Major , Electroencephalography , Humans , Adult , Male , Female , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/physiopathology , Anxiety Disorders/drug therapy , Anxiety Disorders/physiopathology , Middle Aged , Young Adult , Goals , Depressive Disorder, Treatment-Resistant/drug therapy , Anxiety/drug therapy , Phobia, Social/drug therapy , Phobia, Social/physiopathology , Conflict, Psychological
8.
Neuroinformatics ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312131

ABSTRACT

Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.

9.
Prev Vet Med ; 233: 106347, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39321741

ABSTRACT

Introductions of transboundary animal diseases (TADs) into free-ranging wildlife can be difficult to control and devastating for domestic livestock trade. Combating a new TAD introduction in wildlife with an emergency response requires quickly limiting spread of the disease by intensely removing wild animals within a contiguous area. In the case of African swine fever virus (ASFv) in wild pigs (Sus scrofa), which has been spreading in many regions of the world, there is little information on the time- and cost-efficiency of methods for intensively and consistently culling wild pigs and recovering carcasses in an emergency response scenario. We compared the efficiencies of aerial operations, trapping, experimental toxic baiting, and ground shooting in northcentral Texas, USA during two months in 2023. Culling and recovering carcasses of wild pigs averaged a rate of 0.15 wild pigs/person hour and cost an average of $233.04/wild pig ($USD 2023) across all four methods. Aerial operations required the greatest initial investment but subsequently was the most time- and cost-efficient, costing an average of $7266 to reduce the population by a standard measure of 10 %, including recovering carcasses. Aerial operations required a ground crew of ∼7 people/helicopter to recover carcasses. Costs for reducing the population of wild pigs using trapping were similar, although took 13.5 times longer to accomplish. In cases where carcass recovery and disposal are needed (e.g., response to ASFv), a benefit of trapping was immediate carcass recovery. Toxic baiting was less efficient because both culling and carcass recovery required substantial time. We culled very few wild pigs with ground shooting in this landscape. Our results provide insight on the efficiencies of each removal method. Strategically combining removal methods may increase overall efficiency. Overall, our findings inform the preparation of resources, personnel needs, and deployment readiness for TAD responses involving wild pigs.

10.
bioRxiv ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39229007

ABSTRACT

Critical to our understanding of infections and their treatment is the role the innate immune system plays in controlling bacterial pathogens. Nevertheless, many in vivo systems are made or modified such that they do not have an innate immune response. Use of these systems denies the opportunity to examine the synergy between the immune system and antimicrobial agents. In this study we demonstrate that the larva of Galleria mellonella is an effective in vivo model for the study of the population and evolutionary biology of bacterial infections and their treatment. To do this we test three hypotheses concerning the role of the innate immune system during infection. We show: i) sufficiently high densities of bacteria are capable of saturating the innate immune system, ii) bacteriostatic drugs and bacteriophages are as effective as bactericidal antibiotics in preventing mortality and controlling bacterial densities, and iii) minority populations of bacteria resistant to a treating antibiotic will not ascend. Using a highly virulent strain of Staphylococcus aureus and a mathematical computer-simulation model, we further explore how the dynamics of the infection within the short term determine the ultimate infection outcome. We find that excess immune activation in response to high densities of bacteria leads to a strong but short-lived immune response which ultimately results in a high degree of mortality. Overall, our findings illustrate the utility of the G. mellonella model system in conjunction with established in vivo models in studying infectious disease progression and treatment.

12.
Surg Obes Relat Dis ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39277530

ABSTRACT

Iron deficiency has been recognized as a potentially modifiable nutritional complication of metabolic and bariatric surgery (MBS) since prior to the turn of the century. Despite this, it remains the most common and clinically significant nutritional complication of this surgery with the potential to negate quality of life and the health benefits of surgical weight loss. This narrative review summarizes the current literature regarding iron deficiency as it relates to patients with severe obesity and those who undergo MBS. Advances in the clinical knowledge of iron homeostasis in severe obesity as a chronic disease, current diagnostic criteria for the diagnosis of iron deficiency in this patient population, the significance of preoperative iron deficiency, postoperative iron deficiency, and the status of supplementation and treatment will be reviewed with emphasis on gaps in knowledge and needed areas of further study.

13.
Plant Foods Hum Nutr ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251475

ABSTRACT

Legumes are edible seeds that have high nutritional and functional value. Their cultivation and consumption turn out to be an alternative to hunger and guarantee food security in vulnerable populations. This manuscript explores the nutritional and functional properties and potential uses of native Andean legumes such as Pajuro, Tarhui, Common bean, and Lima beans. They contain macro and micronutrients and bioactive compounds with antioxidant, antimicrobial, antidiabetic, and antihypertensive that benefit consumer health. These compounds are particular proteins, peptides, polyphenols, alkaloids, vitamins, minerals, and among others. Moreover, Andean legumes have shown industrial potential due to their technological properties that could be useful in adding value to other food products. These properties are due to their content of starch, oil, fiber, and protein that could facilitate their processing and obtain products with adequate sensory characteristics. Andean legumes have good nutritional and functional value and have the potential to be included in daily diets. Given the accumulated evidence, we believe that the consumption of Andean legumes in nature and processed should be strongly encouraged.

14.
Biomacromolecules ; 25(9): 5389-5401, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39149775

ABSTRACT

Understanding functionality of polysaccharides such as starch requires molecular representations that account for their functional characteristics, such as those related to gelatinization, gelation, and crystallization. Starch macromolecules are inherently very complex, and precise structures can only be deduced from large data sets to generate relational models. For amylopectin, the major, well-organized, branched part of starch, two main molecular representations describe its structure: the classical cluster model and the more recent backbone model. Continuously emerging data call for inspection of these models, necessary revisions, and adoption of the preferred representation. The accumulated molecular and functional data support the backbone model and it well accommodates our present knowledge related to the biosynthesis of starch. This Perspective focuses on our current knowledge of starch structure and functionality directly in relation to the backbone model of amylopectin.


Subject(s)
Amylopectin , Starch , Amylopectin/chemistry , Starch/chemistry , Models, Molecular , Carbohydrate Conformation
19.
Lab Invest ; 104(9): 102123, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147033

ABSTRACT

Tumor-stroma ratio (TSR) has been recognized as a valuable prognostic indicator in various solid tumors. This study aimed to examine the clinicopathologic relevance of TSR in Merkel cell carcinoma (MCC) using artificial intelligence (AI)-based parameterization of the stromal landscape and validate TSR scores generated by our AI model against those assessed by humans. One hundred twelve MCC cases with whole-slide images were collected from 4 different institutions. Whole-slide images were first partitioned into 128 × 128-pixel "mini-patches," then classified using a novel framework, termed pre-tumor and stroma (Pre-TOAST) and TOAST, whose output equaled the probability of the minipatch representing tumor cells rather than stroma. Hierarchical random samplings of 50 minipatches per region were performed throughout 50 regions per slide. TSR and tumor-stroma landscape (TSL) parameters were estimated using the maximum-likelihood algorithm. Receiver operating characteristic curves showed that the area under the curve value of Pre-TOAST in discriminating classes of interest including tumor cells, collagenous stroma, and lymphocytes from nonclasses of interest including hemorrhage, space, and necrosis was 1.00. The area under the curve value of TOAST in differentiating tumor cells from related stroma was 0.93. MCC stroma was categorized into TSR high (TSR ≥ 50%) and TSR low (TSR < 50%) using both AI- and human pathology-based methods. The AI-based TSR-high subgroup exhibited notably shorter metastasis-free survival (MFS) with a statistical significance of P = .029. Interestingly, pathologist-determined TSR subgroups lacked statistical significance in recurrence-free survival, MFS, and overall survival (P > .05). Density-based spatial clustering of applications with noise analysis identified the following 2 distinct TSL clusters: TSL1 and TSL2. TSL2 showed significantly shorter recurrence-free survival (P = .045) and markedly reduced MFS (P < .001) compared with TSL1. TSL classification appears to offer better prognostic discrimination than traditional TSR evaluation in MCC. TSL can be reliably calculated using an AI-based classification framework and predict various prognostic features of MCC.


Subject(s)
Artificial Intelligence , Carcinoma, Merkel Cell , Skin Neoplasms , Humans , Carcinoma, Merkel Cell/pathology , Carcinoma, Merkel Cell/mortality , Female , Male , Aged , Skin Neoplasms/pathology , Skin Neoplasms/mortality , Aged, 80 and over , Stromal Cells/pathology , Middle Aged , Prognosis
20.
Sci Robot ; 9(93): eadk8019, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196952

ABSTRACT

Living tissues are still far from being used as practical components in biohybrid robots because of limitations in life span, sensitivity to environmental factors, and stringent culture procedures. Here, we introduce fungal mycelia as an easy-to-use and robust living component in biohybrid robots. We constructed two biohybrid robots that use the electrophysiological activity of living mycelia to control their artificial actuators. The mycelia sense their environment and issue action potential-like spiking voltages as control signals to the motors and valves of the robots that we designed and built. The paper highlights two key innovations: first, a vibration- and electromagnetic interference-shielded mycelium electrical interface that allows for stable, long-term electrophysiological bioelectric recordings during untethered, mobile operation; second, a control architecture for robots inspired by neural central pattern generators, incorporating rhythmic patterns of positive and negative spikes from the living mycelia. We used these signals to control a walking soft robot as well as a wheeled hard one. We also demonstrated the use of mycelia to respond to environmental cues by using ultraviolet light stimulation to augment the robots' gaits.


Subject(s)
Electrophysiological Phenomena , Mycelium , Robotics , Robotics/instrumentation , Mycelium/physiology , Equipment Design , Walking/physiology , Action Potentials/physiology , Ultraviolet Rays , Gait/physiology , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL