Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
1.
Histopathology ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973387

ABSTRACT

AIMS: Human epidermal growth factor receptor 2 (HER2) expression is an important biomarker in breast cancer (BC). Most BC cases categorised as HER2-negative (HER2-) express low levels of HER2 [immunohistochemistry (IHC) 1+ or IHC 2+/in-situ hybridisation not amplified (ISH-)] and represent a clinically relevant therapeutic category that is amenable to targeted therapy using a recently approved HER2-directed antibody-drug conjugate. A group of practising pathologists, with expertise in breast pathology and BC biomarker testing, outline best practices and guidance for achieving consensus in HER2 IHC scoring for BC. METHODS AND RESULTS: The authors describe current knowledge and challenges of IHC testing and scoring of HER2-low expressing BC and provide best practices and guidance for accurate identification of BCs expressing low levels of HER2. These expert pathologists propose an algorithm for assessing HER2 expression with validated IHC assays and incorporate the 2023 American Society of Clinical Oncology and College of American Pathologist guideline update. The authors also provide guidance on when to seek consensus for HER2 IHC scoring, how to incorporate HER2-low into IHC reporting and present examples of HER2 IHC staining, including challenging cases. CONCLUSIONS: Awareness of BC cases that are negative for HER protein overexpression/gene amplification and the related clinical relevance for targeted therapy highlight the importance of accurate HER2 IHC scoring for optimal treatment selection.

2.
Case Rep Surg ; 2024: 6651107, 2024.
Article in English | MEDLINE | ID: mdl-38911593

ABSTRACT

Non-islet cell tumor hypoglycemia (NICTH) is a rare clinical entity associated with large mesenchymal tumors. Its pathogenesis is most commonly mediated by tumor overproduction of "big" insulin-like growth factor-2. Here, we present a 54-year-old male who presented with noninsulin-mediated hypoglycemia and a 20 cm intra-abdominal leiomyoma. His hypoglycemic episodes resolved after the resection of his tumor. To our knowledge, this is the only documented case in the English literature of NICTH associated with leiomyoma in a male patient. NICTH due to a benign leiomyoma should be in the differential diagnosis for any patient with hypoglycemia and an abdominal mass.

3.
Radiol Artif Intell ; : e230348, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38900042

ABSTRACT

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To determine whether time-dependent deep learning models can outperform single timepoint models in predicting preoperative upgrade of ductal carcinoma in situ (DCIS) to invasive malignancy on dynamic contrastenhanced (DCE) breast MRI without lesion segmentation prerequisite. Materials and Methods In this exploratory study, 154 cases of biopsy-proven DCIS (25 upgraded at surgery and 129 not upgraded) were selected consecutively from a retrospective cohort of preoperative DCE MRI in women with an average age of 58.6 years at time of diagnosis from 2012 to 2022. Binary classification was implemented with convolutional neural network-long short-term memory (CNN-LSTM) architectures benchmarked against traditional CNNs without manual segmentation of the lesions. Combinatorial performance analysis of ResNet50 versus VGG16-based models was performed with each contrast phase. Binary classification area under the receiver operating characteristic curve (AUC) was reported. Results VGG16-based models consistently provided better hold-out test AUCs than ResNet50 in CNN and CNNLSTM studies (multiphase test AUC: 0.67 versus 0.59, respectively, for CNN models; P = .04 and 0.73 versus 0.62 for CNN-LSTM models; P = .008). The time-dependent model (CNN-LSTM) provided a better multiphase test AUC over single-timepoint (CNN) models (0.73 versus 0.67, P = .04). Conclusion Compared with single-timepoint architectures, sequential deep learning algorithms using preoperative DCE MRI improved prediction of DCIS lesions upgraded to invasive malignancy without the need for lesion segmentation. ©RSNA, 2024.

4.
J Am Soc Cytopathol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38744615

ABSTRACT

INTRODUCTION: The integration of whole slide imaging (WSI) and artificial intelligence (AI) with digital cytology has been growing gradually. Therefore, there is a need to evaluate the current state of digital cytology. This study aimed to determine the current landscape of digital cytology via a survey conducted as part of the American Society of Cytopathology (ASC) Digital Cytology White Paper Task Force. MATERIALS AND METHODS: A survey with 43 questions pertaining to the current practices and experiences of WSI and AI in both surgical pathology and cytology was created. The survey was sent to members of the ASC, the International Academy of Cytology (IAC), and the Papanicolaou Society of Cytopathology (PSC). Responses were recorded and analyzed. RESULTS: In total, 327 individuals participated in the survey, spanning a diverse array of practice settings, roles, and experiences around the globe. The majority of responses indicated there was routine scanning of surgical pathology slides (n = 134; 61%) with fewer respondents scanning cytology slides (n = 150; 46%). The primary challenge for surgical WSI is the need for faster scanning and cost minimization, whereas image quality is the top issue for cytology WSI. AI tools are not widely utilized, with only 16% of participants using AI for surgical pathology samples and 13% for cytology practice. CONCLUSIONS: Utilization of digital pathology is limited in cytology laboratories as compared to surgical pathology. However, as more laboratories are willing to implement digital cytology in the near future, the establishment of practical clinical guidelines is needed.

5.
BMC Cancer ; 24(1): 437, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594603

ABSTRACT

BACKGROUND: Soft tissue sarcomas (STS), have significant inter- and intra-tumoral heterogeneity, with poor response to standard neoadjuvant radiotherapy (RT). Achieving a favorable pathologic response (FPR ≥ 95%) from RT is associated with improved patient outcome. Genomic adjusted radiation dose (GARD), a radiation-specific metric that quantifies the expected RT treatment effect as a function of tumor dose and genomics, proposed that STS is significantly underdosed. STS have significant radiomic heterogeneity, where radiomic habitats can delineate regions of intra-tumoral hypoxia and radioresistance. We designed a novel clinical trial, Habitat Escalated Adaptive Therapy (HEAT), utilizing radiomic habitats to identify areas of radioresistance within the tumor and targeting them with GARD-optimized doses, to improve FPR in high-grade STS. METHODS: Phase 2 non-randomized single-arm clinical trial includes non-metastatic, resectable high-grade STS patients. Pre-treatment multiparametric MRIs (mpMRI) delineate three distinct intra-tumoral habitats based on apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) sequences. GARD estimates that simultaneous integrated boost (SIB) doses of 70 and 60 Gy in 25 fractions to the highest and intermediate radioresistant habitats, while the remaining volume receives standard 50 Gy, would lead to a > 3 fold FPR increase to 24%. Pre-treatment CT guided biopsies of each habitat along with clip placement will be performed for pathologic evaluation, future genomic studies, and response assessment. An mpMRI taken between weeks two and three of treatment will be used for biological plan adaptation to account for tumor response, in addition to an mpMRI after the completion of radiotherapy in addition to pathologic response, toxicity, radiomic response, disease control, and survival will be evaluated as secondary endpoints. Furthermore, liquid biopsy will be performed with mpMRI for future ancillary studies. DISCUSSION: This is the first clinical trial to test a novel genomic-based RT dose optimization (GARD) and to utilize radiomic habitats to identify and target radioresistance regions, as a strategy to improve the outcome of RT-treated STS patients. Its success could usher in a new phase in radiation oncology, integrating genomic and radiomic insights into clinical practice and trial designs, and may reveal new radiomic and genomic biomarkers, refining personalized treatment strategies for STS. TRIAL REGISTRATION: NCT05301283. TRIAL STATUS: The trial started recruitment on March 17, 2022.


Subject(s)
Hot Temperature , Sarcoma , Humans , Radiomics , Sarcoma/diagnostic imaging , Sarcoma/genetics , Sarcoma/radiotherapy , Genomics , Radiation Dosage
6.
J Pathol Inform ; 15: 100368, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38496781

ABSTRACT

Soft tissue tumors (STTs) pose diagnostic and therapeutic challenges due to their rarity, complexity, and morphological overlap. Accurate differentiation between benign and malignant STTs is important to set treatment directions, however, this task can be difficult. The integration of machine learning and artificial intelligence (AI) models can potentially be helpful in classifying these tumors. The aim of this study was to investigate AI and machine learning tools in the classification of STT into benign and malignant categories. This study consisted of three components: (1) Evaluation of whole-slide images (WSIs) to classify STT into benign and malignant entities. Five specialized soft tissue pathologists from different medical centers independently reviewed 100 WSIs, representing 100 different cases, with limited clinical information and no additional workup. The results showed an overall concordance rate of 70.4% compared to the reference diagnosis. (2) Identification of cell-specific parameters that can distinguish benign and malignant STT. Using an image analysis software (QuPath) and a cohort of 95 cases, several cell-specific parameters were found to be statistically significant, most notably cell count, nucleus/cell area ratio, nucleus hematoxylin density mean, and cell max caliper. (3) Evaluation of machine learning library (Scikit-learn) in differentiating benign and malignant STTs. A total of 195 STT cases (156 cases in the training group and 39 cases in the validation group) achieved approximately 70% sensitivity and specificity, and an AUC of 0.68. Our limited study suggests that the use of WSI and AI in soft tissue pathology has the potential to enhance diagnostic accuracy and identify parameters that can differentiate between benign and malignant STTs. We envision the integration of AI as a supportive tool to augment the pathologists' diagnostic capabilities.

7.
Arch Pathol Lab Med ; 148(2): 242-255, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37014972

ABSTRACT

CONTEXT.­: Human epidermal growth factor receptor 2 (HER2) status in breast cancer is currently classified as negative or positive for selecting patients for anti-HER2 targeted therapy. The evolution of the HER2 status has included a new HER2-low category defined as an HER2 immunohistochemistry score of 1+ or 2+ without gene amplification. This new category opens the door to a targetable HER2-low breast cancer population for which new treatments may be effective. OBJECTIVE.­: To review the current literature on the emerging category of breast cancers with low HER2 protein expression, including the clinical, histopathologic, and molecular features, and outline the clinical trials and best practice recommendations for identifying HER2-low-expressing breast cancers by immunohistochemistry. DATA SOURCES.­: We conducted a literature review based on peer-reviewed original articles, review articles, regulatory communications, ongoing and past clinical trials identified through ClinicalTrials.gov, and the authors' practice experience. CONCLUSIONS.­: The availability of new targeted therapy potentially effective for patients with breast cancers with low HER2 protein expression requires multidisciplinary recognition. In particular, pathologists need to recognize and identify this category to allow the optimal selection of patients for targeted therapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , In Situ Hybridization, Fluorescence , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Gene Amplification , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism
8.
J Am Soc Cytopathol ; 13(2): 86-96, 2024.
Article in English | MEDLINE | ID: mdl-38158316

ABSTRACT

Digital cytology and artificial intelligence (AI) are gaining greater adoption in the cytopathology laboratory. However, peer-reviewed real-world data and literature are lacking regarding the current clinical landscape. The American Society of Cytopathology in conjunction with the International Academy of Cytology and the Digital Pathology Association established a special task force comprising 20 members with expertise and/or interest in digital cytology. The aim of the group was to investigate the feasibility of incorporating digital cytology, specifically cytology whole slide scanning and AI applications, into the workflow of the laboratory. In turn, the impact on cytopathologists, cytologists (cytotechnologists), and cytology departments were also assessed. The task force reviewed existing literature on digital cytology, conducted a worldwide survey, and held a virtual roundtable discussion on digital cytology and AI with multiple industry corporate representatives. This white paper, presented in 2 parts, summarizes the current state of digital cytology and AI practice in global cytology practice. Part 1 of the white paper presented herein is a review and offers best practice recommendations for incorporating digital cytology into practice. Part 2 of the white paper provides a comprehensive review of AI in cytology practice along with best practice recommendations and legal considerations. Additionally, the results of a global survey regarding digital cytology are highlighted.


Subject(s)
Artificial Intelligence , Cytodiagnosis , Humans , Cytological Techniques , Laboratories , Workflow
9.
J Am Soc Cytopathol ; 13(2): 97-110, 2024.
Article in English | MEDLINE | ID: mdl-38158317

ABSTRACT

Digital cytology and artificial intelligence (AI) are gaining greater adoption in the cytology laboratory. However, peer-reviewed real-world data and literature are lacking in regard to the current clinical landscape. The American Society of Cytopathology in conjunction with the International Academy of Cytology and the Digital Pathology Association established a special task force comprising 20 members with expertise and/or interest in digital cytology. The aim of the group was to investigate the feasibility of incorporating digital cytology, specifically cytology whole slide scanning and AI applications, into the workflow of the laboratory. In turn, the impact on cytopathologists, cytologists (cytotechnologists), and cytology departments were also assessed. The task force reviewed existing literature on digital cytology, conducted a worldwide survey, and held a virtual roundtable discussion on digital cytology and AI with multiple industry corporate representatives. This white paper, presented in 2 parts, summarizes the current state of digital cytology and AI practice in global cytology practice. Part 1 of the white paper is presented as a separate paper which details a review and best practice recommendations for incorporating digital cytology into practice. Part 2 of the white paper presented here provides a comprehensive review of AI in cytology practice along with best practice recommendations and legal considerations. Additionally, the cytology global survey results highlighting current AI practices by various laboratories, as well as current attitudes, are reported.


Subject(s)
Artificial Intelligence , Cytodiagnosis , Humans , Cytological Techniques , Laboratories , Workflow
10.
Arch Pathol Lab Med ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041522

ABSTRACT

CONTEXT.­: Machine learning applications in the pathology clinical domain are emerging rapidly. As decision support systems continue to mature, laboratories will increasingly need guidance to evaluate their performance in clinical practice. Currently there are no formal guidelines to assist pathology laboratories in verification and/or validation of such systems. These recommendations are being proposed for the evaluation of machine learning systems in the clinical practice of pathology. OBJECTIVE.­: To propose recommendations for performance evaluation of in vitro diagnostic tests on patient samples that incorporate machine learning as part of the preanalytical, analytical, or postanalytical phases of the laboratory workflow. Topics described include considerations for machine learning model evaluation including risk assessment, predeployment requirements, data sourcing and curation, verification and validation, change control management, human-computer interaction, practitioner training, and competency evaluation. DATA SOURCES.­: An expert panel performed a review of the literature, Clinical and Laboratory Standards Institute guidance, and laboratory and government regulatory frameworks. CONCLUSIONS.­: Review of the literature and existing documents enabled the development of proposed recommendations. This white paper pertains to performance evaluation of machine learning systems intended to be implemented for clinical patient testing. Further studies with real-world clinical data are encouraged to support these proposed recommendations. Performance evaluation of machine learning models is critical to verification and/or validation of in vitro diagnostic tests using machine learning intended for clinical practice.

11.
Cancer Res ; 83(22): 3681-3692, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37791818

ABSTRACT

The ability of tumors to survive therapy reflects both cell-intrinsic and microenvironmental mechanisms. Across many cancers, including triple-negative breast cancer (TNBC), a high stroma/tumor ratio correlates with poor survival. In many contexts, this correlation can be explained by the direct reduction of therapy sensitivity induced by stroma-produced paracrine factors. We sought to explore whether this direct effect contributes to the link between stroma and poor responses to chemotherapies. In vitro studies with panels of TNBC cell line models and stromal isolates failed to detect a direct modulation of chemoresistance. At the same time, consistent with prior studies, fibroblast-produced secreted factors stimulated treatment-independent enhancement of tumor cell proliferation. Spatial analyses indicated that proximity to stroma is often associated with enhanced tumor cell proliferation in vivo. These observations suggested an indirect link between stroma and chemoresistance, where stroma-augmented proliferation potentiates the recovery of residual tumors between chemotherapy cycles. To evaluate this hypothesis, a spatial agent-based model of stroma impact on proliferation/death dynamics was developed that was quantitatively parameterized using inferences from histologic analyses and experimental studies. The model demonstrated that the observed enhancement of tumor cell proliferation within stroma-proximal niches could enable tumors to avoid elimination over multiple chemotherapy cycles. Therefore, this study supports the existence of an indirect mechanism of environment-mediated chemoresistance that might contribute to the negative correlation between stromal content and poor therapy outcomes. SIGNIFICANCE: Integration of experimental research with mathematical modeling reveals an indirect microenvironmental chemoresistance mechanism by which stromal cells stimulate breast cancer cell proliferation and highlights the importance of consideration of proliferation/death dynamics. See related commentary by Wall and Echeverria, p. 3667.


Subject(s)
Drug Resistance, Neoplasm , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Cell Proliferation , Fibroblasts/metabolism , Stromal Cells/metabolism , Cell Line, Tumor
12.
Lab Invest ; 103(11): 100255, 2023 11.
Article in English | MEDLINE | ID: mdl-37757969

ABSTRACT

Digital pathology has transformed the traditional pathology practice of analyzing tissue under a microscope into a computer vision workflow. Whole-slide imaging allows pathologists to view and analyze microscopic images on a computer monitor, enabling computational pathology. By leveraging artificial intelligence (AI) and machine learning (ML), computational pathology has emerged as a promising field in recent years. Recently, task-specific AI/ML (eg, convolutional neural networks) has risen to the forefront, achieving above-human performance in many image-processing and computer vision tasks. The performance of task-specific AI/ML models depends on the availability of many annotated training datasets, which presents a rate-limiting factor for AI/ML development in pathology. Task-specific AI/ML models cannot benefit from multimodal data and lack generalization, eg, the AI models often struggle to generalize to new datasets or unseen variations in image acquisition, staining techniques, or tissue types. The 2020s are witnessing the rise of foundation models and generative AI. A foundation model is a large AI model trained using sizable data, which is later adapted (or fine-tuned) to perform different tasks using a modest amount of task-specific annotated data. These AI models provide in-context learning, can self-correct mistakes, and promptly adjust to user feedback. In this review, we provide a brief overview of recent advances in computational pathology enabled by task-specific AI, their challenges and limitations, and then introduce various foundation models. We propose to create a pathology-specific generative AI based on multimodal foundation models and present its potentially transformative role in digital pathology. We describe different use cases, delineating how it could serve as an expert companion of pathologists and help them efficiently and objectively perform routine laboratory tasks, including quantifying image analysis, generating pathology reports, diagnosis, and prognosis. We also outline the potential role that foundation models and generative AI can play in standardizing the pathology laboratory workflow, education, and training.


Subject(s)
Artificial Intelligence , Machine Learning , Pathology , Humans , Image Processing, Computer-Assisted , Neural Networks, Computer , Pathologists , Pathology/trends
13.
Insights Imaging ; 14(1): 54, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995467

ABSTRACT

Enormous recent progress in diagnostic testing can enable more accurate diagnosis and improved clinical outcomes. Yet these tests are increasingly challenging and frustrating; the volume and diversity of results may overwhelm the diagnostic acumen of even the most dedicated and experienced clinician. Because they are gathered and processed within the "silo" of each diagnostic discipline, diagnostic data are fragmented, and the electronic health record does little to synthesize new and existing data into usable information. Therefore, despite great promise, diagnoses may still be incorrect, delayed, or never made. Integrative diagnostics represents a vision for the future, wherein diagnostic data, together with clinical data from the electronic health record, are aggregated and contextualized by informatics tools to direct clinical action. Integrative diagnostics has the potential to identify correct therapies more quickly, modify treatment when appropriate, and terminate treatment when not effective, ultimately decreasing morbidity, improving outcomes, and avoiding unnecessary costs. Radiology, laboratory medicine, and pathology already play major roles in medical diagnostics. Our specialties can increase the value of our examinations by taking a holistic approach to their selection, interpretation, and application to the patient's care pathway. We have the means and rationale to incorporate integrative diagnostics into our specialties and guide its implementation in clinical practice.

14.
bioRxiv ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-36798328

ABSTRACT

The ability of tumors to survive therapy reflects both cell-intrinsic and microenvironmental mechanisms. Across many cancers, including triple-negative breast cancer (TNBC), a high stroma/tumor ratio correlates with poor survival. In many contexts, this correlation can be explained by the direct reduction of therapy sensitivity by stroma-produced paracrine factors. We sought to explore whether this direct effect contributes to the link between stroma and poor responses to chemotherapies. Our in vitro studies with panels of TNBC cell line models and stromal isolates failed to detect a direct modulation of chemoresistance. At the same time, consistent with prior studies, we observed treatment-independent enhancement of tumor cell proliferation by fibroblast-produced secreted factors. Using spatial statistics analyses, we found that proximity to stroma is often associated with enhanced tumor cell proliferation in vivo . Based on these observations, we hypothesized an indirect link between stroma and chemoresistance, where stroma-augmented proliferation potentiates the recovery of residual tumors between chemotherapy cycles. To evaluate the feasibility of this hypothesis, we developed a spatial agent-based model of stroma impact on proliferation/death dynamics. The model was quantitatively parameterized using inferences from histological analyses and experimental studies. We found that the observed enhancement of tumor cell proliferation within stroma-proximal niches can enable tumors to avoid elimination over multiple chemotherapy cycles. Therefore, our study supports the existence of a novel, indirect mechanism of environment-mediated chemoresistance that might contribute to the negative correlation between stromal content and poor therapy outcomes.

15.
Cancer Discov ; 13(3): 654-671, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36598417

ABSTRACT

Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA). Distinct pathways of tumor evolution are associated with inactivation of PRC2 genes and H3K27 trimethylation (H3K27me3) status. Tumors with H3K27me3 loss evolve through extensive chromosomal losses followed by whole-genome doubling and chromosome 8 amplification, and show lower levels of immune cell infiltration. Retention of H3K27me3 leads to extensive genomic instability, but an immune cell-rich phenotype. Specific SCNAs detected in both tumor samples and cell-free DNA (cfDNA) act as a surrogate for H3K27me3 loss and immune infiltration, and predict prognosis. SIGNIFICANCE: MPNST is the most common cause of death and morbidity for individuals with NF1, a relatively common tumor predisposition syndrome. Our results suggest that somatic copy-number and methylation profiling of tumor or cfDNA could serve as a biomarker for early diagnosis and to stratify patients into prognostic and treatment-related subgroups. This article is highlighted in the In This Issue feature, p. 517.


Subject(s)
Nerve Sheath Neoplasms , Neurofibromatosis 1 , Neurofibrosarcoma , Humans , Neurofibrosarcoma/genetics , Neurofibrosarcoma/diagnosis , Neurofibrosarcoma/pathology , Histones/metabolism , DNA Methylation , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neurofibromatosis 1/genetics , Genomics , Nerve Sheath Neoplasms/genetics , Nerve Sheath Neoplasms/metabolism
16.
Adv Radiat Oncol ; 8(1): 101086, 2023.
Article in English | MEDLINE | ID: mdl-36483058

ABSTRACT

Purpose: Whether the therapeutic response of soft-tissue sarcoma to neoadjuvant treatment is predictive for clinical outcomes is unclear. Given the rarity of this disease and the confounding effects of chemotherapy, this study analyzes whether a favorable pathologic response (fPR) after neoadjuvant radiation therapy (RT) alone is associated with clinical benefits. Methods and Materials: An institutional review board-approved retrospective review was conducted on a database of patients with primary soft-tissue sarcoma treated at our institution between 1987 and 2015 with neoadjuvant RT alone followed by surgical resection. Time-to-event outcomes estimated with a Kaplan-Meier analysis included overall survival, progression-free survival (PFS), locoregional control, and distant control (DC). Cox regression analyses were performed to determine prognostic variables associated with clinical outcomes. Results: Of the overall cohort of 315 patients, 181 patients (57%) were included in the primary analysis with documented pathologic necrosis (PN) rates (mean: 59%) and a median follow up from diagnosis of 48 months (range, 4-170 months). The median neoadjuvant RT dose was 50 Gy (range, 40-60 Gy), and the majority of patients had negative surgical margins (79%). Only 35 patients (19%) achieved a fPR (PN ≥95%), which was associated with a higher R0 resection rate (94% vs. 75%; P = .013), a significant 5-year PFS benefit (74% vs. 43%; P = .014), and a nonsignificant 5-year DC benefit (76% vs. 62%; P = .12) compared with PN <95%. On multivariable analysis, fPR was an independent predictor for PFS (hazard ratio: 0.47; 95% confidence interval, 0.25-0.90; P = .022). Conclusions: Achieving fPR with neoadjuvant RT alone is associated with a higher R0 resection rate and possible DC benefit, translating into a significant improvement in PFS. Further studies to improve pathologic response rates and prospectively validate this endpoint are warranted.

17.
J Am Coll Radiol ; 20(4): 455-466, 2023 04.
Article in English | MEDLINE | ID: mdl-36565973

ABSTRACT

Enormous recent progress in diagnostic testing can enable more accurate diagnosis and improved clinical outcomes. Yet these tests are increasingly challenging and frustrating; the volume and diversity of results may overwhelm the diagnostic acumen of even the most dedicated and experienced clinician. Because they are gathered and processed within the "silo" of each diagnostic discipline, diagnostic data are fragmented, and the electronic health record does little to synthesize new and existing data into usable information. Therefore, despite great promise, diagnoses may still be incorrect, delayed, or never made. Integrative diagnostics represents a vision for the future, wherein diagnostic data, together with clinical data from the electronic health record, are aggregated and contextualized by informatics tools to direct clinical action. Integrative diagnostics has the potential to identify correct therapies more quickly, modify treatment when appropriate, and terminate treatment when not effective, ultimately decreasing morbidity, improving outcomes, and avoiding unnecessary costs. Radiology, laboratory medicine, and pathology already play major roles in medical diagnostics. Our specialties can increase the value of our examinations by taking a holistic approach to their selection, interpretation, and application to the patient's care pathway. We have the means and rationale to incorporate integrative diagnostics into our specialties and guide its implementation in clinical practice.


Subject(s)
Radiology , Humans , Radiology/methods , Radiography , Palliative Care , Research Report , Physical Examination
18.
Fetal Pediatr Pathol ; 42(2): 241-252, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36062956

ABSTRACT

Background: Ewing sarcoma (ES) can be confirmed by identifying the EWSR1-FLI1 fusion transcript. This study is to investigate whether immunostaining (IHC) of PRKCB-a protein directly regulated by EWSR1-FLI1 is a surrogate maker for diagnosing ES in routine practice. Methods: Microarray gene expression analyses were conducted. RKCB IHC was applied to 69 ES confirmed by morphology and molecular methods, and 41 non-Ewing small round cell tumors. EWSR1 rearrangement, EWSR1-FLI1 fusion or t(11;22)(q24;q12) were identified by fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, or cytogenetic analysis, respectively. Results: Gene array analyses showed significant overexpression of the PRKCB in ES. PRKCB IHC was positive in 19 cases of ES with EWSR1-FLI1 fusion, 3 cases with cytogenetic 11:22 translocation and 59 cases with EWSR1 rearrangement while negative in only one EWSR1 rearranged case. PRKCB IHC is sensitive (98%) and specific (96%) in detecting EWSR1 rearranged ES. Conclusions: PRKCB is a reliable antibody for diagnosing ES in routine practice.


Subject(s)
Sarcoma, Ewing , Sarcoma , Humans , Sarcoma, Ewing/diagnosis , Sarcoma, Ewing/genetics , Immunohistochemistry , In Situ Hybridization, Fluorescence , RNA-Binding Protein EWS/genetics , Biomarkers , Oncogene Proteins, Fusion/genetics , Protein Kinase C beta/genetics , Protein Kinase C beta/metabolism
19.
J Natl Compr Canc Netw ; 20(11): 1204-1214, 2022 11.
Article in English | MEDLINE | ID: mdl-36351335

ABSTRACT

Gastrointestinal stromal tumors (GIST) are the most common type of soft tissue sarcoma that occur throughout the gastrointestinal tract. Most of these tumors are caused by oncogenic activating mutations in the KIT or PDGFRA genes. The NCCN Guidelines for GIST provide recommendations for the diagnosis, evaluation, treatment, and follow-up of patients with these tumors. These NCCN Guidelines Insights summarize the panel discussion behind recent important updates to the guidelines, including revised systemic therapy options for unresectable, progressive, or metastatic GIST based on mutational status, and updated recommendations for the management of GIST that develop resistance to specific tyrosine kinase inhibitors.


Subject(s)
Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/therapy , Receptor, Platelet-Derived Growth Factor alpha/genetics , Proto-Oncogene Proteins c-kit/genetics , Mutation
20.
Cureus ; 14(10): e30718, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36439569

ABSTRACT

A primary malignant glomus tumor of the liver is extremely rare and diagnostically challenging. We present an exceptional case of such with a diagnosis confirmed by MIR143-NOTCH2 rearrangement. The case was successfully managed with neoadjuvant chemotherapy followed by surgery. This report highlights the utilization of molecular analysis to aid in the diagnosis of rare soft tissue malignancies and supports a multimodality approach to the treatment of large, high-grade malignant glomus tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...