Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Nat Commun ; 15(1): 3745, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702304

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Cell Differentiation , DNA Copy Number Variations , N-Myc Proto-Oncogene Protein , Neural Crest , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neural Crest/metabolism , Neural Crest/pathology , Female , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Chromosome Aberrations , Human Embryonic Stem Cells/metabolism , Transcriptome , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Mol Oncol ; 17(9): 1744-1762, 2023 09.
Article En | MEDLINE | ID: mdl-37491696

Glioblastoma, the most malignant brain tumor in adults, exhibits characteristic patterns of epigenetic alterations that await elucidation. The DNA methylome of glioblastoma revealed recurrent epigenetic silencing of HTATIP2, which encodes a negative regulator of importin ß-mediated cytoplasmic-nuclear protein translocation. Its deregulation may thus alter the functionality of cancer-relevant nuclear proteins, such as the base excision repair (BER) enzyme N-methylpurine DNA glycosylase (MPG), which has been associated with treatment resistance in GBM. We found that induction of HTATIP2 expression in GBM cells leads to a significant shift of predominantly nuclear to cytoplasmic MPG, whereas depletion of endogenous HTATIP2 results in enhanced nuclear MPG localization. Reduced nuclear MPG localization, prompted by HTATIP2 expression or by depletion of MPG, yielded less phosphorylated-H2AX-positive cells upon treatment with an alkylating agent. This suggested reduced MPG-mediated formation of apurinic/apyrimidinic sites, leaving behind unrepaired DNA lesions, reflecting a reduced capacity of BER in response to the alkylating agent. Epigenetic silencing of HTATIP2 may thus increase nuclear localization of MPG, thereby enhancing the capacity of the glioblastoma cells to repair treatment-related lesions and contributing to treatment resistance.


DNA Glycosylases , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , DNA Repair/genetics , DNA Glycosylases/genetics , Alkylating Agents , Nuclear Proteins/genetics , Epigenesis, Genetic , Acetyltransferases/genetics , Acetyltransferases/metabolism , Transcription Factors/metabolism
3.
Cell Death Dis ; 13(12): 1037, 2022 12 13.
Article En | MEDLINE | ID: mdl-36513631

Bromodomain and extra-terminal tail (BET) proteins have been identified as potential epigenetic targets in cancer, including glioblastoma. These epigenetic modifiers link the histone code to gene transcription that can be disrupted with small molecule BET inhibitors (BETi). With the aim of developing rational combination treatments for glioblastoma, we analyzed BETi-induced differential gene expression in glioblastoma derived-spheres, and identified 6 distinct response patterns. To uncover emerging actionable vulnerabilities that can be targeted with a second drug, we extracted the 169 significantly disturbed DNA Damage Response genes and inspected their response pattern. The most prominent candidate with consistent downregulation, was the O-6-methylguanine-DNA methyltransferase (MGMT) gene, a known resistance factor for alkylating agent therapy in glioblastoma. BETi not only reduced MGMT expression in GBM cells, but also inhibited its induction, typically observed upon temozolomide treatment. To determine the potential clinical relevance, we evaluated the specificity of the effect on MGMT expression and MGMT mediated treatment resistance to temozolomide. BETi-mediated attenuation of MGMT expression was associated with reduction of BRD4- and Pol II-binding at the MGMT promoter. On the functional level, we demonstrated that ectopic expression of MGMT under an unrelated promoter was not affected by BETi, while under the same conditions, pharmacologic inhibition of MGMT restored the sensitivity to temozolomide, reflected in an increased level of γ-H2AX, a proxy for DNA double-strand breaks. Importantly, expression of MSH6 and MSH2, which are required for sensitivity to unrepaired O6-methylguanine-lesions, was only briefly affected by BETi. Taken together, the addition of BET-inhibitors to the current standard of care, comprising temozolomide treatment, may sensitize the 50% of patients whose glioblastoma exert an unmethylated MGMT promoter.


Glioblastoma , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Dacarbazine/pharmacology , Dacarbazine/therapeutic use , Nuclear Proteins/metabolism , Antineoplastic Agents, Alkylating/pharmacology , DNA Methylation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Transcription Factors/metabolism , DNA Modification Methylases/genetics , DNA Modification Methylases/metabolism , O(6)-Methylguanine-DNA Methyltransferase/genetics , O(6)-Methylguanine-DNA Methyltransferase/metabolism , O(6)-Methylguanine-DNA Methyltransferase/therapeutic use , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA/metabolism , Cell Cycle Proteins/metabolism
4.
Nat Commun ; 11(1): 4166, 2020 08 20.
Article En | MEDLINE | ID: mdl-32820173

T cells engineered to express chimeric antigen receptors (CAR-T cells) have shown impressive clinical efficacy in the treatment of B cell malignancies. However, the development of CAR-T cell therapies for solid tumors is hampered by the lack of truly tumor-specific antigens and poor control over T cell activity. Here we present an avidity-controlled CAR (AvidCAR) platform with inducible and logic control functions. The key is the combination of (i) an improved CAR design which enables controlled CAR dimerization and (ii) a significant reduction of antigen-binding affinities to introduce dependence on bivalent interaction, i.e. avidity. The potential and versatility of the AvidCAR platform is exemplified by designing ON-switch CARs, which can be regulated with a clinically applied drug, and AND-gate CARs specifically recognizing combinations of two antigens. Thus, we expect that AvidCARs will be a highly valuable platform for the development of controllable CAR therapies with improved tumor specificity.


Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Animals , Antigens, Neoplasm/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Cytotoxicity, Immunologic/immunology , Humans , Lymphocyte Activation/immunology , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism
...