Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38931160

ABSTRACT

Gut microbiota-derived uremic toxins (UT) accumulate in patients with chronic kidney disease (CKD). Dietary phosphorus and protein restriction are common in CKD treatment, but the relationship between dietary phosphorus, a key nutrient for the gut microbiota, and protein-derived UT is poorly studied. Thus, we explored the relationship between dietary phosphorus and serum UT in CKD rats. For this exploratory study, we used serum samples from a larger study on the effects of dietary phosphorus on intestinal phosphorus absorption in nephrectomized (Nx, n = 22) or sham-operated (sham, n = 18) male Sprague Dawley rats. Rats were randomized to diet treatment groups of low or high phosphorus (0.1% or 1.2% w/w, respectively) for 1 week, with serum trimethylamine oxide (TMAO), indoxyl sulfate (IS), and p-cresol sulfate (pCS) analyzed by LC-MS. Nx rats had significantly higher levels of serum TMAO, IS, and pCS compared to sham rats (all p < 0.0001). IS showed a significant interaction between diet and CKD status, where serum IS was higher with the high-phosphorus diet in both Nx and sham rats, but to a greater extent in the Nx rats. Serum TMAO (p = 0.24) and pCS (p = 0.34) were not affected by dietary phosphorus levels. High dietary phosphorus intake for 1 week results in higher serum IS in both Nx and sham rats. The results of this exploratory study indicate that reducing dietary phosphorus intake in CKD may have beneficial effects on UT accumulation.


Subject(s)
Dietary Proteins , Phosphorus, Dietary , Uremic Toxins , Animals , Male , Rats , Cresols/blood , Gastrointestinal Microbiome/drug effects , Indican/blood , Methylamines/blood , Nephrectomy , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/metabolism , Sulfuric Acid Esters/blood , Dietary Proteins/metabolism
2.
J Ren Nutr ; 33(6): 717-730, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37116624

ABSTRACT

INTRODUCTION: Plant-based protein is of growing interest for dietary management of chronic kidney disease (CKD) and is hypothesized to preserve kidney function and reduce CKD-mineral bone disorder (MBD) complications, among other benefits. This systematic review aimed to summarize the available clinical trial evidence for the effect of plant-based protein on kidney function and CKD-MBD outcomes in adults with stage 3-5 CKD not on dialysis. METHODS: Searches of Medline, Embase, Agricola, CAB abstracts, Web of Science, Scopus, and hand searching were performed. Clinical trials with ≥8 participants ≥18 years of age with an estimated glomerular filtration rate <60 mL/min/1.73 m2 but not on dialysis were included. Additionally, only clinical trials with ≥1-week interventions with ≥50% dietary protein from plant-based sources and reported at least one outcome for both kidney function and CKD-MBD outcomes were included. Of the 10,962 identified abstracts, 32 met inclusion criteria and were assessed for risk of bias. RESULTS: Results for kidney function and CKD-MBD outcomes were heterogenous, with most studies having suboptimal methodological quality. In most of the studies (27/32), protein source was altered only secondarily to low-protein diet interventions. Thus, data synthesis and interpretation were focused on a subset of five studies that investigated a change in protein source only (i.e., animal vs. plant). Of this subset, four studies reported no change in kidney function, while one study reported a decrease. Three studies reported no change in serum phosphorus, and one study reported lower serum phosphorus following a vegetarian diet. Further, limited data and inconclusive results were observed for phosphaturic hormones, parathyroid hormone, and fibroblast growth factor-23. CONCLUSION: Current clinical trial evidence on plant-based protein interventions for preserving kidney function and preventing CKD-MBD is limited to inform clinical guidelines at this time. This systematic review emphasizes the ongoing need to research the effects of plant-based protein on kidney function and CKD-MBD outcomes.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Kidney Failure, Chronic , Renal Insufficiency, Chronic , Adult , Humans , Chronic Kidney Disease-Mineral and Bone Disorder/complications , Plant Proteins , Renal Insufficiency, Chronic/complications , Parathyroid Hormone , Minerals , Phosphorus , Dietary Proteins , Kidney
3.
JBMR Plus ; 6(12): e10698, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36530183

ABSTRACT

Dietary phosphorus restriction and phosphorus binders are commonly prescribed for patients with chronic kidney disease (CKD). However, occurrences of non-adherence to these interventions are common. As low-phosphorus (LP) diets have been consistently experimentally shown in vitro to increase intestinal phosphorus absorption efficiency, a bout of non-adherence to diet or binders may cause an unintended consequence of enhanced intestinal phosphorus absorption. Thus, we aimed to determine the effect of a single bout of high-phosphorus (HP) intake after acclimation to a LP diet. Male Sprague Dawley rats with 5/6 nephrectomy (n = 36) or sham operation (n = 36) were block-randomized to 1 of 3 diets: LP (0.1% P w/w), HP (1.2%), or LP followed by acute HP (LPHP 0.1% then 1.2%). Phosphorus absorption tests were conducted using 33P radioisotope administrated by oral gavage or intravenously (iv). Although the overall two-way ANCOVA model for intestinal fractional phosphorus absorption was non-significant, exploratory comparisons showed intestinal fractional phosphorus absorption efficiency tended to be higher in rats in the LP compared with HP or LPHP groups. Rats in the HP or LPHP groups had higher plasma phosphorus compared with rats in the LP group, but the LPHP group was not different from the HP group. Gene expression of the major intestinal phosphate transporter, NaPi-2b, was lower in the jejunum of rats in the LPHP group compared with rats in the HP group but not different in the duodenum. These results demonstrate that an acute HP load after acclimation to a LP diet does not lead to enhanced intestinal fractional phosphorus absorption efficiency in 5/6 nephrectomized male rats. These data provide evidence against the notion that dietary phosphorus restriction or binder use adversely increases absorption efficiency after a single instance of dietary or binder non-adherence. However, other adverse consequences of fluctuating dietary phosphorus intake cannot be ruled out. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECTION OF CITATIONS
SEARCH DETAIL