Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Bioeng Transl Med ; 9(4): e10662, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036075

ABSTRACT

Electroporation, or the use of electric pulses to facilitate the intracellular delivery of DNA, RNA, and other molecules, is a well-established technique, that has been demonstrated to significantly augment the immunogenicity of DNA/mRNA vaccines and therapeutics. However, the clinical translation of traditional electroporators has been limited due to high costs, large size, complex user operation, and poor tolerability in humans due to nerve stimulation. In prior work, we introduced ePatch: an ultra-low-cost, handheld, battery-free electroporator employing a piezoelectric pulser coupled with a microneedle electrode array that showed enhanced immunogenic responses to an intradermal SARS-CoV-2 DNA vaccine in mice. The current study shifts focus from efficacy to tolerability, hypothesizing that ePatch's microneedle array, which localizes the electric field to the superficial skin strata, will minimize nerve stimulation and improve patient comfort. We tested this hypothesis in 14 healthy adults, monitoring pain and other potential adverse effects associated with electroporation. Compared to the insertion of a traditional hypodermic needle, the ePatch was less painful. Adverse effects such as pain, tenderness, erythema and swelling at the application sites were minimal, transient, and statistically indistinguishable between the experimental and placebo ePatch application, suggesting excellent tolerability towards electroporation. In summary, ePatch has a favorable tolerability profile in humans and offers the potential for the safe use of electroporation in a variety of clinical settings, including DNA and mRNA vaccination.

2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34670842

ABSTRACT

Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other pathogens with pandemic potential requires safe, protective, inexpensive, and easily accessible vaccines that can be developed and manufactured rapidly at a large scale. DNA vaccines can achieve these criteria, but induction of strong immune responses has often required bulky, expensive electroporation devices. Here, we report an ultra-low-cost (<1 USD), handheld (<50 g) electroporation system utilizing a microneedle electrode array ("ePatch") for DNA vaccination against SARS-CoV-2. The low cost and small size are achieved by combining a thumb-operated piezoelectric pulser derived from a common household stove lighter that emits microsecond, bipolar, oscillatory electric pulses and a microneedle electrode array that targets delivery of high electric field strength pulses to the skin's epidermis. Antibody responses against SARS-CoV-2 induced by this electroporation system in mice were strong and enabled at least 10-fold dose sparing compared to conventional intramuscular or intradermal injection of the DNA vaccine. Vaccination was well tolerated with mild, transient effects on the skin. This ePatch system is easily portable, without any battery or other power source supply, offering an attractive, inexpensive approach for rapid and accessible DNA vaccination to combat COVID-19, as well as other epidemics.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Electroporation/instrumentation , SARS-CoV-2 , Vaccines, DNA/administration & dosage , Animals , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , Costs and Cost Analysis , Electroporation/economics , Electroporation/methods , Equipment Design , Female , Genes, Reporter , Humans , Mice , Mice, Inbred BALB C , Microelectrodes , Needles , Pandemics/prevention & control , Proof of Concept Study , Rats , Rats, Wistar , Skin/immunology , Skin/metabolism , Transfection , Vaccination/economics , Vaccination/instrumentation , Vaccination/methods , Vaccines, DNA/genetics , Vaccines, DNA/immunology
3.
Ind Eng Chem Res ; 60(44): 15874-15884, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-35757375

ABSTRACT

More than 60 years ago, Richard Feynman gave a lecture titled "There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics", where he called on others to join the then-nascent field of nanotechnology. In a similar spirit, we wish to invite chemists, biologists, physicists, bioengineers, educators, high school students, and inventors of all backgrounds to join us in the emerging field of frugal science. In this Review, we define frugal science and use six case studies to describe the broad applications of frugal science, from synthetic biology to disease diagnostics. We conclude by establishing an argument for curiosity-driven research through frugal science to enable broader access in chemical and bioengineering research and drive innovation.

4.
PLoS Biol ; 18(1): e3000589, 2020 01.
Article in English | MEDLINE | ID: mdl-31922526

ABSTRACT

Electroporation is a basic yet powerful method for delivering small molecules (RNA, DNA, drugs) across cell membranes by application of an electrical field. It is used for many diverse applications, from genetically engineering cells to drug- and DNA-based vaccine delivery. Despite this broad utility, the high cost of electroporators can keep this approach out of reach for many budget-conscious laboratories. To address this need, we develop a simple, inexpensive, and handheld electroporator inspired by and derived from a common household piezoelectric stove lighter. The proposed "ElectroPen" device can cost as little as 23 cents (US dollars) to manufacture, is portable (weighs 13 g and requires no electricity), can be easily fabricated using 3D printing, and delivers repeatable exponentially decaying pulses of about 2,000 V in 5 ms. We provide a proof-of-concept demonstration by genetically transforming plasmids into Escherichia coli cells, showing transformation efficiency comparable to commercial devices, but at a fraction of the cost. We also demonstrate the potential for rapid dissemination of this approach, with multiple research groups across the globe validating the ease of construction and functionality of our device, supporting the potential for democratization of science through frugal tools. Thus, the simplicity, accessibility, and affordability of our device holds potential for making modern synthetic biology accessible in high school, community, and resource-poor laboratories.


Subject(s)
Electroporation/instrumentation , Gene Transfer Techniques/instrumentation , Cost-Benefit Analysis , Electricity , Electroporation/economics , Equipment Design/economics , Escherichia coli , Gene Transfer Techniques/economics , Humans , Laboratories/economics , Manufactured Materials/economics , Poverty Areas , Printing, Three-Dimensional , Transformation, Bacterial , Transportation
5.
PLoS Biol ; 17(5): e3000251, 2019 05.
Article in English | MEDLINE | ID: mdl-31112539

ABSTRACT

The centrifuge is an essential tool for many aspects of research and medical diagnostics. However, conventional centrifuges are often inaccessible outside of standard laboratory settings, such as remote field sites, because they require a constant external power source and can be prohibitively costly in resource-limited settings and Science, technology, engineering, and mathematics (STEM)-focused programs. Here we present the 3D-Fuge, a 3D-printed hand-powered centrifuge, as a novel alternative to standard benchtop centrifuges. Based on the design principles of a paper-based centrifuge, this 3D-printed instrument increases the volume capacity to 2 mL and can reach hand-powered centrifugation speeds up to 6,000 rpm. The 3D-Fuge devices presented here are capable of centrifugation of a wide variety of different solutions such as spinning down samples for biomarker applications and performing nucleotide extractions as part of a portable molecular lab setup. We introduce the design and proof-of-principle trials that demonstrate the utility of low-cost 3D-printed centrifuges for use in remote field biology and educational settings.


Subject(s)
Centrifugation/instrumentation , Molecular Biology , Printing, Three-Dimensional/instrumentation , Genomics , Nanopores , Nucleotides/isolation & purification , Proteins/analysis , Rainforest , Specimen Handling , Synthetic Biology
SELECTION OF CITATIONS
SEARCH DETAIL