Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Comput Biol Med ; 168: 107664, 2024 01.
Article in English | MEDLINE | ID: mdl-38000245

ABSTRACT

Cancer metastasis is one of the main causes of cancer progression and difficulty in treatment. Genes play a key role in the process of cancer metastasis, as they can influence tumor cell invasiveness, migration ability and fitness. At the same time, there is heterogeneity in the organs of cancer metastasis. Breast cancer, prostate cancer, etc. tend to metastasize in the bone. Previous studies have pointed out that the occurrence of metastasis is closely related to which tissue is transferred to and genes. In this paper, we identified genes associated with cancer metastasis to different tissues based on LASSO and Pearson correlation coefficients. In total, we identified 45 genes associated with bone metastases, 89 genes associated with lung metastases, and 86 genes associated with liver metastases. Through the expression of these genes, we propose a CNN-based model to predict the occurrence of metastasis. We call this method MDCNN, which introduces a modulation mechanism that allows the weights of convolution kernels to be adjusted at different positions and feature maps, thereby adaptively changing the convolution operation at different positions. Experiments have proved that MDCNN has achieved satisfactory prediction accuracy in bone metastasis, lung metastasis and liver metastasis, and is better than other 4 methods of the same kind. We performed enrichment analysis and immune infiltration analysis on bone metastasis-related genes, and found multiple pathways and GO terms related to bone metastasis, and found that the abundance of macrophages and monocytes was the highest in patients with bone metastasis.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Deep Learning , Liver Neoplasms , Prostatic Neoplasms , Male , Humans , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Bone and Bones/pathology , Liver Neoplasms/genetics
2.
Mol Cancer ; 19(1): 111, 2020 06 27.
Article in English | MEDLINE | ID: mdl-32593305

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

3.
Mol Cancer ; 17(1): 9, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343249

ABSTRACT

BACKGROUND: Most patients with breast cancer in advanced stages of the disease suffer from bone metastases which lead to fractures and nerve compression syndromes. microRNA dysregulation is an important event in the metastases of breast cancer to bone. microRNA-124 (miR-124) has been proved to inhibit cancer progression, whereas its effect on bone metastases of breast cancer has not been reported. Therefore, this study aimed to investigate the role and underlying mechanism of miR-124 in bone metastases of breast cancer. METHODS: In situ hybridization (ISH) was used to detect the expression of miR-124 in breast cancer tissues and bone metastatic tissues. Ventricle injection model was constructed to explore the effect of miR-124 on bone metastasis in vivo. The function of cancer cell derived miR-124 in the differentiation of osteoclast progenitor cells was verified in vitro. Dual-luciferase reporter assay was conducted to confirm Interleukin-11 (IL-11) as a miR-124 target. The involvement of miR-124/IL-11 in the prognosis of breast cancer patients with bone metastasis was determined by Kaplan-Meier analysis. RESULTS: Herein, we found that miR-124 was significantly reduced in metastatic bone tissues from breast cancers. Down-regulation of miR-124 was associated with aggressive clinical characteristics and shorter bone metastasis-free survival and overall survival. Restoration of miR-124 suppressed, while inhibition of miR-124 promoted the bone metastasis of breast cancer cells in vivo. At the cellular level, gain of function and loss-of function assays indicated that cancer cell-derived miR-124 inhibited the survival and differentiation of osteoclast progenitor cells. At the molecular level, we demonstrated that IL-11 partially mediated osteoclastogenesis suppression by miR-124 using in vitro and in vivo assays. Furthermore, IL-11 levels were inversely correlated with miR-124, and up-regulation IL-11 in bone metastases was associated with a poor prognosis. CONCLUSIONS: Thus, the identification of a dysregulated miR-124/IL-11 axis helps elucidate mechanisms of breast cancer metastases to bone, uncovers new prognostic markers, and facilitates the development of novel therapeutic targets to treat and even prevent bone metastases of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Interleukin-11/genetics , MicroRNAs/genetics , RNA Interference , Animals , Bone Neoplasms/secondary , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Cell Differentiation/genetics , Cell Line, Tumor , Cell Survival/genetics , Disease Models, Animal , Female , Humans , In Situ Hybridization , Kaplan-Meier Estimate , Mice , Models, Biological , Neoplasm Metastasis , Osteoclasts/cytology , Osteoclasts/metabolism , Prognosis , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL