Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Methods Mol Biol ; 2754: 533-549, 2024.
Article En | MEDLINE | ID: mdl-38512688

Tau pathology is a major hallmark of many neurodegenerative diseases summarized under the term tauopathies. In most of these disorders,  such as Alzheimer's disease, the neuronal axonal microtubule-binding Tau protein becomes mislocalized to the somatodendritic compartment. In human disease, this missorting of Tau is accompanied by an abnormally high phosphorylation state of the Tau protein, and several downstream pathological consequences (e.g., loss of microtubules, degradation of postsynaptic spines, impaired synaptic transmission, neuronal death). While some mechanisms of Tau sorting, missorting, and associated pathologies have been addressed in rodent models, few studies have addressed human Tau in physiological disease-relevant human neurons. Thus, suitable human-derived in vitro models are necessary. This protocol provides a simple step-by-step protocol for generating homogeneous cultures of cortical glutamatergic neurons using an engineered Ngn2 transgene-carrying WTC11 iPSC line. We further demonstrate strategies to improve neuronal maturity, that is, synapse formation, Tau isoform expression, and neuronal activity by co-culturing hiPSC-derived glutamatergic neurons with mouse-derived astrocytes. Finally, we describe a simple protocol for high-efficiency lentiviral transduction of hiPSC-derived neurons at almost all stages of differentiation.


Induced Pluripotent Stem Cells , tau Proteins , Mice , Animals , Humans , tau Proteins/genetics , tau Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Neurons/metabolism , Axons/metabolism , Cell Differentiation , Cells, Cultured
2.
Med Genet ; 33(3): 245-249, 2021 Sep.
Article En | MEDLINE | ID: mdl-38835703

Neurogenetic diseases represent a broad group of diseases with variable genetic causes and clinical manifestations. Among these, polymerase-gamma (POLG)-spectrum disorders are relatively frequent with an estimated disease frequency of ∼1:10.000. Also, mutations in the POLG gene are by far the most important cause for mitochondriopathy. POLG-spectrum disorders usually result in progressive loss of brain function and may involve severe and deadly encephalopathy, seizures, and neuromuscular disease, as well as cardiac and hepatic failure in some cases. Onset of disease may range from birth to late adulthood, and disease duration ranges from weeks in severe cases to decades. There is no curative treatment; current animal models do not faithfully recapitulate human disease, complicating preclinical therapeutic studies. Human-based preclinical model systems must be developed to understand the human disease mechanisms and develop therapeutic approaches. In this review, we provide an overview of the current approaches to model neurogenetic disorders in a human cellular and neuronal environment with a focus on POLG-spectrum disorders. We discuss the necessity of using neuronal cells and the advantages and pitfalls of currently available cell model approaches, namely (i) CRISPR-based (i. e., genetically engineered) and induced pluripotent stem cell (iPSC) (i. e., stem cell like)-derived neuronal models and (ii) the reprogramming of patient-derived cells into iPSCs and derived neurons. Despite the fact that cell models are by definition in vitro systems incapable of recapitulating all aspects of human disease, they are still the reasonable point of start to discover disease mechanisms and develop therapeutic approaches to treat neurogenetic diseases.

3.
J Hum Genet ; 65(12): 1115-1123, 2020 Dec.
Article En | MEDLINE | ID: mdl-32737394

We describe five members of a consanguineous Pakistani family (Family I) plus two affected children from families of different ethnic origins presenting with neurodevelopmental disorders with overlapping features. All affected individuals from families have intellectual disability (ID), ranging from mild to profound, and reduced motor and cognitive skills plus variable features including short stature, microcephaly, developmental delay, hypotonia, dysarthria, deafness, visual problems, enuresis, encopresis, behavioural anomalies, delayed pubertal onset and facial dysmorphism. We first mapped the disease locus in the large family (Family I), and by exome sequencing identified homozygous ZNF407 c.2814_2816dup (p.Val939dup) in four affected members where DNA samples were available. By exome sequencing we detected homozygous c.2405G>T (p.Gly802Val) in the affected member of Family II and compound heterozygous variants c.2884C>G (p.Arg962Gly) and c.3642G>C (p.Lys1214Asn) in the affected member of Family III. Homozygous c.5054C>G (p.Ser1685Trp) has been reported in two brothers with an ID syndrome. Affected individuals we present did not exhibit synophrys, midface hypoplasia, kyphosis, 5th finger camptodactyly, short 4th metatarsals or limited knee mobility observed in the reported family.


DNA-Binding Proteins/genetics , Dwarfism/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Transcription Factors/genetics , Child , Child, Preschool , Dwarfism/complications , Dwarfism/pathology , Exome/genetics , Female , Heterozygote , Homozygote , Humans , Intellectual Disability/complications , Intellectual Disability/pathology , Male , Microcephaly/complications , Microcephaly/pathology , Motor Activity/physiology , Muscle Hypotonia/complications , Muscle Hypotonia/genetics , Muscle Hypotonia/pathology , Neurodevelopmental Disorders/complications , Neurodevelopmental Disorders/pathology , Pedigree , Phenotype , Exome Sequencing
...