Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Chemosphere ; 364: 143131, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39168382

ABSTRACT

The continuous release of municipal and industrial products into the environment poses a growing concern for public health. Among environmental pollutants, polystyrene (PS) stands out as a primary constituent of environmental plastic waste, given its widespread use and high production rates owing to its durability and user-friendly properties. The detection of polystyrene microparticles (PS-MPs) in various living organisms has been well-documented, posing a serious threat due to their potential passage into the human ecosystem. In this manuscript, we aimed to study the toxicological effects of low concentrations of pristine and photoaged PS-MPs in a murine macrophage cell line. To this purpose, PS-MPs were photoaged by indoor exposure to visible light to simulate environmental weathering due to solar irradiation (PS-MPs3h). Physical characterization revealed that the irradiation treatment results in particle degradation and the possible release of nanoparticles. Monocultures of the RAW264.7 cell line were then exposed to PS-MPs and PS-MPs3h at concentrations comparable to experimental measurements from biological samples, to assess cytotoxicity, intracellular oxidative stress, primary genotoxicity, and inflammatory effects. Significant toxicity-related outcomes were observed in cells treated with both pristine PS-MPs and PS-MPs3h even at low concentrations (0,10 µg/ml and 1 µg/ml). PS-MPs3h exhibited greater adverse effects compared to PS-MPs, including reduced cell viability, increased ROS production, elevated DNA damage, and upregulation of IL-6 and NOS2 gene expression. Therefore, we can conclude that changes induced by environmental aging in the physicochemical composition of PS microplastics play a crucial role in the adverse health outcomes associated with microplastic exposure.

2.
Gels ; 10(7)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39057501

ABSTRACT

Oral diseases encompassing conditions such as oral cancer, periodontitis, and endodontic infections pose significant challenges due to the oral cavity's susceptibility to pathogenic bacteria and infectious agents. Saliva, a key component of the oral environment, can compromise drug efficacy during oral disease treatment by diluting drug formulations and reducing drug-site interactions. Thus, it is imperative to develop effective drug delivery methods. Stimuli-responsive nanocomposite hydrogels offer a promising solution by adapting to changes in environmental conditions during disease states, thereby enabling targeted drug delivery. These smart drug delivery systems have the potential to enhance drug efficacy, minimize adverse reactions, reduce administration frequency, and improve patient compliance, thus facilitating a faster recovery. This review explores various types of stimuli-responsive nanocomposite hydrogels tailored for smart drug delivery, with a specific focus on their applications in managing oral diseases.

3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000212

ABSTRACT

Plant-derived extracellular vesicles (EVs) have been recognized as important mediators of intercellular communication able to transfer active biomolecules across the plant and animal kingdoms. EVs have demonstrated an impressive array of biological activities, displaying preventive and therapeutic potential in mitigating various pathological processes. Indeed, the simplicity of delivering exogenous and endogenous bioactive molecules to mammalian cells with their low cytotoxicity makes EVs suitable agents for new therapeutic strategies for a variety of pathologies. In this study, EVs were isolated from Opuntia ficus-indica fruit (OFI-EVs) and characterized by particle size distribution, concentration, and bioactive molecule composition. OFI-EVs had no obvious toxicity and demonstrated a protective role in the inflammatory process and oxidative stress in vitro model of chronic skin wounds. The results demonstrated that pretreatment with OFI-EVs decreased the activity and gene expression of pro-inflammatory cytokines (IL-6, IL-8, and TNF-α) in the LPS-stimulated human leukemia monocytic cell line (THP-1). Furthermore, OFI-EVs promote the migration of human dermal fibroblasts (HDFs), speeding up the normal wound healing processes. This study sheds light, for the first time, on the role of OFI-EVs in modulating important biological processes such as inflammation and oxidation, thereby identifying EVs as potential candidates for healing chronic cutaneous wounds.


Subject(s)
Extracellular Vesicles , Fibroblasts , Fruit , Opuntia , Wound Healing , Opuntia/chemistry , Humans , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Wound Healing/drug effects , Fruit/chemistry , Fibroblasts/metabolism , Fibroblasts/drug effects , Cytokines/metabolism , Cell Movement/drug effects , Oxidative Stress/drug effects , THP-1 Cells
4.
Int J Mol Sci ; 24(14)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37511259

ABSTRACT

The mucosal-dominant variant of pemphigus vulgaris (MPV) is an autoimmune disease characterized by oral mucosal blistering and circulating pathogenic IgG antibodies against desmoglein 3 (Dsg3), resulting in life-threatening bullae and erosion formation. Recently, microRNAs (miRNAs) have emerged as promising players in the diagnosis and prognosis of several pathological states. For the first time, we have identified a different expression profile of miRNAs isolated from plasma-derived exosomes (P-EVs) of MPV patients positive for antibodies against Dsg3 (Dsg3-positive) compared to healthy controls. Moreover, a dysregulated miRNA profile was confirmed in MPV tissue biopsies. In particular, a strong downregulation of the miR-148a-3p expression level in P-EVs of MPV patients compared to healthy controls was demonstrated. Bioinformatics prediction analysis identifies metalloproteinase-7 (MMP7) as a potential miR-148a-3p target. An in vitro acantholysis model revealed that the miR-148a-3p expression level was dramatically downregulated after treatment with Dsg3 autoantibodies, with a concomitant increase in MMP7 expression. The increased expression of MMP7 leads to the disruption of intercellular and/or extracellular matrix adhesion in an in vitro cellular model of MPV, with subsequent cell dissociation. Overexpression of miR-148a-3p prevented cell dissociation and regressed MMP7 upregulation. Our findings suggest a pivotal role of P-EV cargo in regulating molecular mechanisms involved in MPV pathogenesis and indicate them as potential MPV therapeutic targets.


Subject(s)
MicroRNAs , Pemphigus , Humans , Pemphigus/genetics , Pemphigus/diagnosis , Down-Regulation/genetics , Matrix Metalloproteinase 7/metabolism , Desmoglein 3/genetics , Desmoglein 3/metabolism , Autoantibodies , MicroRNAs/genetics , MicroRNAs/metabolism , Blister , Mouth Mucosa/metabolism
5.
Antioxidants (Basel) ; 12(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37237859

ABSTRACT

Dry eye disease (DED) is a dynamic and complex disease that can cause significant damage to the ocular surface and discomfort, compromising the patient's quality of life. Phytochemicals such as resveratrol have received increasing attention due to their ability to interfere with multiple pathways related to these diseases. However, the low bioavailability and the poor therapeutic response of resveratrol hinder its clinical applications. Cationic polymeric nanoparticles, in combination with in situ gelling polymers, could represent a promising strategy to prolong drug corneal residence time reducing the frequency of administration and increasing the therapeutic response. Eyedrop formulations, based on acetylated polyethyleneimine-modified polylactic-co-glicolyc acid- (PLGA-PEI) nanoparticles loaded with resveratrol (RSV-NPs) were dispersed into poloxamer 407 hydrogel and characterized in terms of pH, gelation time, rheological properties, in vitro drugs release, and biocompatibility. Moreover, the antioxidant and anti-inflammatory effects of RSV were assessed in vitro by mimicking a DED condition through the exposition of epithelial corneal cells to a hyperosmotic state. This formulation exhibited sustained release of RSV for up to 3 days, exerting potent antioxidant and anti-inflammatory effects on corneal epithelial cells. In addition, RSV reversed the mitochondrial dysfunction mediated by high osmotic pressure, leading to upregulated sirtuin-1 (SIRT1) expression, an essential regulator of mitochondrial function. These results suggest the potential of eyedrop formulation as a platform to overcome the rapid clearance of current solutions for treating various inflammation- and oxidative stress-related diseases such as DED.

6.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903701

ABSTRACT

A straightforward, low-cost, and scalable solid-state mechanochemical protocol for the synthesis of silver nanoparticles (AgNP) based on the use of the highly reducing agri-food by-product pecan nutshell (PNS) is reported herein. Under optimized conditions (180 min, 800 rpm, PNS/AgNO3 ratio = 55/45 w/w), a complete reduction in silver ions was achieved, leading to a material containing ca. 36% w/w Ag0 (X-ray diffraction analysis). Dynamic light scattering and microscopic analysis showed a uniform size distribution (15-35 nm average diameter) of the spherical AgNP. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay revealed lower-although still absolutely high (EC50 = 5.8 ± 0.5 mg/mL)-antioxidant properties for PNS for the further incorporation of AgNP, supporting the efficient reduction of Ag+ ions by PNS phenolic compounds. Photocatalytic experiments indicated that AgNP-PNS (0.4 mg/mL) was able to induce the >90% degradation of methylene blue after 120 min visible light irradiation, with good recycling stability. Finally, AgNP-PNS demonstrated high biocompatibility and significantly light-enhanced growth inhibition properties against Pseudomonas aeruginosa and Streptococcus mutans at concentrations as low as 250 µg/mL, also eliciting an antibiofilm effect at 1000 µg/mL. Overall, the adopted approach allowed to reuse a cheap and abundant agri-food by-product and required no toxic or noxious chemicals, making AgNP-PNS a sustainable and easy-to-access multifunctional material.

7.
Polymers (Basel) ; 15(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904410

ABSTRACT

The abnormal matrix remodeling process, as well as inflammation, angiogenesis, and tumor metastasis, are related to an increase in the synthesis and secretion of matrix metalloproteinases (MMPs), the zinc-dependent proteolytic endopeptidases. Recent studies have evidenced MMPs' role in osteoarthritis (OA) development, during which chondrocytes undergo hypertrophic differentiation and exhibit enhanced catabolism. The trait of OA is extracellular matrix (ECM) progressive degradation regulated by many factors, in which MMPs play an important role, which indicates them as potential therapeutic targets. Herein, a small interfering RNA (siRNA) delivery system able to suppress MMPs' activity was synthetized. Results demonstrated that positively charged nanoparticles (AcPEI-NPs) complexed with MMP-2 siRNA are efficiently internalized by cells with endosomal escape. Moreover, avoiding lysosome degradation, MMP2/AcPEI nanocomplex increases nucleic acid delivery efficiency. Gel zymography, RT-PCR, and ELISA analyses confirmed MMP2/AcPEI nanocomplex activity even when embedded within collagen matrix resembling the natural extracellular matrix. Further, the inhibition of in vitro collagen degradation exerts a protective effect on chondrocyte dedifferentiation. The suppression of MMP-2 activity, preventing matrix degradation, protects chondrocytes against degeneration and supporting ECM homeostasis in articular cartilage. These encouraging results promote further investigation to validate the utilization of MMP-2 siRNA as ''molecular switch'' able to counteract osteoarthritis.

8.
Dent Mater ; 39(5): 485-491, 2023 05.
Article in English | MEDLINE | ID: mdl-36935304

ABSTRACT

OBJECTIVE: Dentin-pulp complex is object of interest in the regenerative endodontic field as well as the natural function of human dental pulp stem cells (hDPSCs) that may differentiate into specific cells able to repair and/or regenerate both hard and soft dental structures. The aim of the present study was to evaluate the capacity of hDPSCs to differentiate in odontoblastic-like cells by evaluating the expression of specific odontogenic-related genes and to prove the ability of treatment with calcium-based materials such as calcium carbonate (CaCO3), calcium hydroxide (Ca(OH)2), and mineral trioxide aggregate (MTA). METHODS: hDPSCs were obtained and isolated from a third molar of a young patient. Odontogenic-related gene expression was assessed unti1 28 days of culture as well as alkaline phosphatase activity (ALP). hDPSCs were cultured in odontoblastic-induction medium used as control, and in presence of different concentrations of CaCO3, Ca(OH)2, and MTA. RESULTS: The results demonstrated an upregulation in odontoblastic cell-related genes, in particular of the early differentiation marker known as matrix extracellular phosphoglycoprotein (MEPE), as well as increased ALP activity and the presence of calcium deposits, mainly by stimulation with calcium derivatives. In this regard, treatment of pulp tissue with CaCO3, Ca(OH)2 and even better with MTA seemed to be effective for dentinogenesis. SIGNIFICANCE: The ease of isolation of hDPSCs from discarded or extracted teeth offers a promising source of autologous cells that may be applied for regenerative purpose in combination with selected bioactive materials. However, further investigations should be conducted to confirm the obtained results.


Subject(s)
Calcium , Dental Pulp , Humans , Cell Differentiation , Odontoblasts , Dentin , Gene Expression , Cells, Cultured
9.
Pharmaceutics ; 15(3)2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36986666

ABSTRACT

Diabetic wound infections (DWI) represent one of the most costly and disruptive complications in diabetic mellitus. The hyperglycemic state induces a persistent inflammation with immunological and biochemical impairments that promotes delayed wound healing processes and wound infection that often results in extended hospitalization and limb amputations. Currently, the available therapeutic options for the management of DWI are excruciating and expensive. Hence, it is essential to develop and improve DWI-specific therapies able to intervene on multiple fronts. Quercetin (QUE) exhibits excellent anti-inflammatory, antioxidant, antimicrobial and wound healing properties, which makes it a promising molecule for the management of diabetic wounds. In the present study, Poly-lactic acid/poly(vinylpyrrolidone) (PP) co-electrospun fibers loaded with QUE were developed. The results demonstrated a bimodal diameter distribution with contact angle starting from 120°/127° and go to 0° in less than 5 s indicating the hydrophilic nature of fabricated samples. The release QUE kinetics, analyzed in simulated wound fluid (SWF), revealed a strong initial burst release, followed by a constant and continuous QUE release. Moreover, QUE-loaded membranes present excellent antibiofilm and anti-inflammatory capacity and significantly reduce the gene expression of M1 markers tumor necrosis factor (TNF)-α, and IL-1ß in differentiated macrophages. In conclusion, the results suggested that the prepared mats loaded with QUE could be a hopeful drug-delivery system for the effective treatment of diabetic wound infections.

10.
J Funct Biomater ; 14(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36826881

ABSTRACT

Atopic dermatitis (AD) is a common disease-causing skin inflammation, redness, and irritation, which can eventually result in infection that drastically impacts patient quality of life. Resveratrol (Res) is a natural phytochemical famed for its excellent anti-inflammatory and antioxidant activities. However, it is poorly bioavailable. Thus, a drug delivery system is needed to enhance in vivo bioactivity. Herein, we report the preparation of hyaluronic acid (HA) hydrogels containing resveratrol-loaded chitosan (CS) nanoparticles, their physicochemical analysis, and their potential therapeutic effects in the treatment of AD. Positively charged CS nanoparticles prepared by tripolyphosphate (TPP) gelation showed sizes ranging from 120 to around 500 nm and Res encapsulation efficiency as high as 80%. Embedding the nanoparticles in HA retarded their hydrolytic degradation and also slowed resveratrol release. Resveratrol released from nanoparticle-loaded hydrogel counteracted the oxidative damage induced by ROS generation in TNF-α/INF-γ-treated human keratinocytes (HaCaT) used as an AD in vitro model. Moreover, pre-treatment with Res@gel reduced secretion and gene expression of proinflammatory cytokines in HaCaT cells. The physicochemical analysis and in vitro assay confirmed that the formulated hydrogel could be considered an efficient and sustained resveratrol delivery vector in AD treatment.

11.
Front Chem ; 11: 1257769, 2023.
Article in English | MEDLINE | ID: mdl-38313221

ABSTRACT

Introduction: Epilepsy is a chronic brain disease characterized by repeated seizures and caused by excessive glutamate receptor activation. Many plants are traditionally used in the treatment of this disease. This study aimed to evaluate the bioavailability of a polyphenolic extract obtained from Origanum majorana L. (OMP) leaves, as well as its antiepileptic activity and its potential mechanism of action. Methods: We have developed and validated a simple, rapid, and accurate stability-indicating reversed-phase liquid chromatographic method for the simultaneous determination of caffeine and quercetin in rat plasma. The OMP antiepileptic effect was evaluated with pilocarpine-induced seizures, and a docking method was used to determine the possible interaction between caffeic acid and quercetin with the N-methyl-D-aspartate (NMDA) receptor. Results and Discussion: Both compounds tested showed low bioavailability in unchanged form. However, the tested extract showed an anticonvulsant effect due to the considerably delayed onset of seizures in the pilocarpine model at a dose of 100 mg/kg. The molecular docking proved a high-affinity interaction between the caffeic acid and quercetin with the NMDA receptor. Taken together, OLP polyphenols demonstrated good antiepileptic activity, probably due to the interaction of quercetin, caffeic acid, or their metabolites with the NMDA receptor.

12.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Article in English | MEDLINE | ID: mdl-35740107

ABSTRACT

Although osteoarthritis (OA) is a chronic inflammatory degenerative disease affecting millions of people worldwide, the current therapies are limited to palliative care and do not eliminate the necessity of surgical intervention in the most severe cases. Several dietary and nutraceutical factors, such as hydroxytyrosol (Hyt), have demonstrated beneficial effects in the prevention or treatment of OA both in vitro and in animal models. However, the therapeutic application of Hyt is limited due to its poor bioavailability following oral administration. In the present study, a localized drug delivery platform containing a combination of Hyt-loading chitosan nanoparticles (Hyt-NPs) and in situ forming hydrogel have been developed to obtain the benefits of both hydrogels and nanoparticles. This thermosensitive formulation, based on Pluronic F-127 (F-127), hyaluronic acid (HA) and Hyt-NPs (called Hyt@tgel) presents the unique ability to be injected in a minimally invasive way into a target region as a freely flowing solution at room temperature forming a gel at body temperature. The Hyt@tgel system showed reduced oxidative and inflammatory effects in the chondrocyte cellular model as well as a reduction in senescent cells after induction with H2O2. In addition, Hyt@tgel influenced chondrocytes gene expression under pathological state maintaining their metabolic activity and limiting the expression of critical OA-related genes in human chondrocytes treated with stressors promoting OA-like features. Hence, it can be concluded that the formulated hydrogel injection could be proposed for the efficient and sustained Hyt delivery for OA treatment. The next step would be the extraction of "added-value" bioactive polyphenols from by-products of the olive industry, in order to develop a green delivery system able not only to enhance the human wellbeing but also to promote a sustainable environment.

13.
Polymers (Basel) ; 14(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35566894

ABSTRACT

The beneficial effects of the Mediterranean diet (MedDiet), the most widely followed healthy diet in the world, are principally due to the presence in the foods of secondary metabolites, mainly polyphenols, whose healthy characteristics are widely recognized. However, one of the biggest problems associated with the consumption of polyphenols as nutraceutical adjuvant concerns their bioavailability. During the last decades, different nanotechnological approaches have been developed to enhance polyphenol bioavailability, avoiding the metabolic modifications that lead to low absorption, and improving their retention time inside the organisms. This review focuses on the most recent findings regarding the encapsulation and delivery of the bioactive molecules present in the foods daily consumed in the MedDiet such as olive oil, wine, nuts, spice, and herbs. In addition, the possibility of recovering the polyphenols from food waste was also explored, taking into account the increased market demand of functional foods and the necessity to obtain valuable biomolecules at low cost and in high quantity. This circular economy strategy, therefore, represents an excellent approach to respond to both the growing demand of consumers for the maintenance of human wellness and the economic and ecological exigencies of our society.

14.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408602

ABSTRACT

The management of periodontitis remains a vital clinical challenge due to the interplay between the microorganisms of the dental biofilm and the host inflammatory response leading to a degenerative process in the surrounding tissues. Quercetin (QUE), a natural flavonol found in many foods, including apples, onions and tea, has exhibited prolonged and strong antibiofilm and anti-inflammatory effects both in vitro and in vivo. However, its clinical application is limited by its poor stability and water solubility, as well as its low bioavailability. Thus, in the present study, electrospun polylactic acid (PLA) nanofibers loaded with different amounts (5−10% w/w) of QUE were produced to rapidly respond to the acidic microenvironment typical of periodontal pockets during periodontal disease. This strategy demonstrated that PLA-QUE membranes can act as a drug reservoir releasing high QUE concentrations in the presence of oral bacterial infection (pH < 5.5), and thus limiting Pseudomonas aeruginosa PAO1 and Streptococcus mutans biofilm maturation. In addition, released QUE exerts antioxidant and anti-inflammatory effects on P. gingivalis Lipopolysaccharide (LPS)-stimulated human gingival fibroblast (HGFs). The reported results confirmed that PLA-QUE membranes could inhibit subgingival biofilm maturation while reducing interleukin release, thereby limiting host inflammatory response. Overall, this study provided an effective pH-sensitive drug delivery system as a promising strategy for treating periodontitis.


Subject(s)
Nanofibers , Periodontitis , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Nanofibers/chemistry , Periodontitis/drug therapy , Polyesters/chemistry , Quercetin/chemistry
15.
Dent Mater ; 37(11): 1734-1750, 2021 11.
Article in English | MEDLINE | ID: mdl-34561100

ABSTRACT

OBJECTIVE: To assess the microtensile bond strength (MTBS) and interfacial characteristics of universal adhesives applied on dentine air-abraded using different powders. The analysis includes the cytotoxicity of the powders and their effect on odontogenic gene expression. METHODS: Sound human dentine specimens were air-abraded using bioglass 45S5 (BAG), polycarboxylated zinc-doped bioglass (SEL), alumina (AL) and submitted to SEM analysis. Resin composite was bonded to air-abraded or smear layer-covered dentine (SML) using an experimental (EXP) or a commercial adhesive (ABU) in etch&rinse (ER) or self-etch (SE) modes. Specimens were stored in artificial saliva (AS) and subjected to MTBS testing after 24 h and 10 months. Interfacial nanoleakage assessment was accomplished using confocal microscopy. The cytotoxicity of the powders was assessed, also the total RNA was extracted and the expression of odontogenic genes was evaluated through RT-PCR. RESULTS: After prolonged AS storage, specimens in the control (SML) and AL groups showed a significant drop in MTBS (p > 0.05), with degradation evident within the bonding interface. Specimens in BAG or SEL air-abraded dentine groups showed no significant difference, with resin-dentine interfaces devoid of important degradation. The metabolic activity of pulp stem cells was not affected by the tested powders. SEL and BAG had no effect on the expression of odontoblast differentiation markers. However, AL particles interfered with the expression of the odontogenic markers. SIGNIFICANCE: The use of bioactive glass air-abrasion may prevent severe degradation at the resin-dentine interface. Unlike alumina, bioactive glasses do not interfere with the normal metabolic activity of pulp stem cells and their differentiation to odontoblasts.


Subject(s)
Dental Bonding , Dentin-Bonding Agents , Composite Resins , Dental Cements , Dentin , Gene Expression , Humans , Materials Testing , Resin Cements , Surface Properties , Tensile Strength
16.
Front Cell Infect Microbiol ; 11: 702676, 2021.
Article in English | MEDLINE | ID: mdl-34490142

ABSTRACT

Clinical manifestations of leishmaniasis range from self-healing, cutaneous lesions to fatal infections of the viscera. With no preventative Leishmania vaccine available, the frontline option against leishmaniasis is chemotherapy. Unfortunately, currently available anti-Leishmania drugs face several obstacles, including toxicity that limits dosing and emergent drug resistant strains in endemic regions. It is, therefore, imperative that more effective drug formulations with decreased toxicity profiles are developed. Previous studies had shown that 2-(((5-Methyl-2-thienyl)methylene)amino)-N-phenylbenzamide (also called Retro-2) has efficacy against Leishmania infections. Structure-activity relationship (SAR) analogs of Retro-2, using the dihydroquinazolinone (DHQZ) base structure, were subsequently described that are more efficacious than Retro-2. However, considering the hydrophobic nature of these compounds that limits their solubility and uptake, the current studies were initiated to determine whether the solubility of Retro-2 and its SAR analogs could be enhanced through encapsulation in amphiphilic polymer nanoparticles. We evaluated encapsulation of these compounds in the amphiphilic, thermoresponsive oligo(ethylene glycol) methacrylate-co-pentafluorostyrene (PFG30) copolymer that forms nanoparticle aggregates upon heating past temperatures of 30°C. The hydrophobic tracer, coumarin 6, was used to evaluate uptake of a hydrophobic molecule into PFG30 aggregates. Mass spectrometry analysis showed considerably greater delivery of encapsulated DHQZ analogs into infected cells and more rapid shrinkage of L. amazonensis communal vacuoles. Moreover, encapsulation in PFG30 augmented the efficacy of Retro-2 and its SAR analogs to clear both L. amazonensis and L. donovani infections. These studies demonstrate that encapsulation of compounds in PFG30 is a viable approach to dramatically increase bioavailability and efficacy of anti-Leishmania compounds.


Subject(s)
Leishmania , Leishmaniasis , Animals , Biological Availability , Leishmaniasis/drug therapy , Mice , Mice, Inbred BALB C , Polymers
17.
Carbohydr Polym ; 272: 118506, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34420752

ABSTRACT

Biobased and biodegradable films were prepared by physically mixing 2,3-dialdehyde cellulose (DAC) with two other biopolymers, zein and gelatin, in three different proportions. The antimicrobial activities of the composite blends against Gram-positive and Gram-negative bacteria increase with the increase of DAC content. Cell viability tests on mammalian cells showed that the materials were not cytotoxic. In addition, DAC and gelatin were able to promote thermal degradation of the blends. However, DAC increased the stiffness and decreased the glass transition temperature of the blends, while gelatin was able to decrease the stiffness of the film. Morphological analysis showed the effect of DAC on the surface smoothness of the blends. The contact angle confirmed that all blends were within the range of hydrophilic materials. Although all the blends showed impressive performance for wound dressing application, the blend with gelatin might be more suitable for this purpose due to its better mechanical performance and antibacterial activity.


Subject(s)
Anti-Bacterial Agents , Bandages , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Tensile Strength
18.
Molecules ; 26(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34443457

ABSTRACT

Curcumin extracted from the rhizome of Curcuma Longa has been used in therapeutic preparations for centuries in different parts of the world. However, its bioactivity is limited by chemical instability, water insolubility, low bioavailability, and extensive metabolism. In this study, the coaxial electrospinning technique was used to produce both poly (ε-caprolactone) (PCL)-curcumin and core-shell nanofibers composed of PCL and curcumin in the core and poly (lactic acid) (PLA) in the shell. Morphology and physical properties, as well as the release of curcumin were studied and compared with neat PCL, showing the formation of randomly oriented, defect-free cylindrical fibers with a narrow distribution of the dimensions. The antibacterial and antibiofilm potential, including the capacity to interfere with the quorum-sensing mechanism, was evaluated on Pseudomonas aeruginosa PAO1, and Streptococcus mutans, two opportunistic pathogenic bacteria frequently associated with infections. The reported results demonstrated the ability of the Curcumin-loading membranes to inhibit both PAO1 and S. mutans biofilm growth and activity, thus representing a promising solution for the prevention of biofilm-associated infections. Moreover, the high biocompatibility and the ability to control the oxidative stress of damaged tissue, make the synthesized membranes useful as scaffolds in tissue engineering regeneration, helping to accelerate the healing process.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms , Curcumin/pharmacology , Infections/microbiology , Nanofibers/chemistry , Tissue Engineering , Biofilms/drug effects , Biphenyl Compounds/chemistry , Cell Death/drug effects , Cell Line , Drug Liberation , Free Radical Scavengers/pharmacology , Humans , Kinetics , Microbial Sensitivity Tests , Picrates/chemistry , Polyesters/chemistry , Quorum Sensing/drug effects , Thermogravimetry
19.
Molecules ; 25(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266220

ABSTRACT

Origanum majorana L. is a plant commonly used in folk medicine to treat depression and several neurological disorders. This study aims to evaluate the antidepressant-like effect of the Origanum majorana L. polyphenols (OMP) obtained from the aerial parts using two different depression model tests: The forced swimming test (FST) and the tail suspension test (TST) in Swiss albino mice. The experiments were performed on days 1, 7, 14, and 21 with daily administration of different treatments. Two different doses were chosen for this study (50 and 100 mg/kg), and paroxetine was used as a positive control. Immobility as a consequence of the depression state was significantly reduced following the treatment with OMP, indicating an antidepressant effect. A subacute toxicity study was also performed following the Organization for Economic Co-operation and Development (OECD) Guidelines (407), showing no sign of toxicity for the studied doses. The phytochemical screening revealed the presence of 12 components, all belonging to polyphenols: Arbutin, rosmarinic acid, ursolic acid, quercetin-3-O-glucoside, quercetin-7-O-glucuronic acid, luteolin-7-O-glucoside, kaempferol-3-0-glucuronic acid, Kaempferol-3-0-pentose, caffeic acid, catechin, quercetin, and rutin. These findings suggest that O. majorana has interesting antidepressant-like properties, which deserve further investigation.


Subject(s)
Antidepressive Agents/pharmacology , Depression/drug therapy , Motor Activity/drug effects , Origanum/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Antidepressive Agents/toxicity , Depression/pathology , Hindlimb Suspension , Male , Mice , Plant Extracts/toxicity , Polyphenols/toxicity , Swimming , Toxicity Tests
20.
Int J Mol Sci ; 21(19)2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33050117

ABSTRACT

A mismatch between ß-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.


Subject(s)
Drosophila melanogaster/drug effects , Huntington Disease/drug therapy , Huntington Disease/metabolism , Longevity/drug effects , Methylhydrazines/pharmacology , Solute Carrier Family 22 Member 5/antagonists & inhibitors , Solute Carrier Family 22 Member 5/metabolism , Animals , Carnitine/metabolism , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Drosophila melanogaster/genetics , Drug Evaluation, Preclinical/methods , Humans , Mice , Molecular Docking Simulation , Protein Aggregation, Pathological/drug therapy , Signal Transduction/drug effects , Solute Carrier Family 22 Member 5/genetics , Transfection , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL