Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
2.
Brain Commun ; 5(2): fcad114, 2023.
Article En | MEDLINE | ID: mdl-37124945

This scientific commentary refers to 'Human stem cell-derived astrocytes exhibit region-specific heterogeneity in their secretory profiles', by Clarke et al. (https://doi.org/10.1093/brain/awaa258) in Brain.

3.
J Cell Biol ; 222(5)2023 05 01.
Article En | MEDLINE | ID: mdl-37014324

The LIM homeodomain transcription factors LMX1A and LMX1B are essential mediators of midbrain dopaminergic neuronal (mDAN) differentiation and survival. Here we show that LMX1A and LMX1B are autophagy transcription factors that provide cellular stress protection. Their suppression dampens the autophagy response, lowers mitochondrial respiration, and elevates mitochondrial ROS, and their inducible overexpression protects against rotenone toxicity in human iPSC-derived mDANs in vitro. Significantly, we show that LMX1A and LMX1B stability is in part regulated by autophagy, and that these transcription factors bind to multiple ATG8 proteins. Binding is dependent on subcellular localization and nutrient status, with LMX1B interacting with LC3B in the nucleus under basal conditions and associating with both cytosolic and nuclear LC3B during nutrient starvation. Crucially, ATG8 binding stimulates LMX1B-mediated transcription for efficient autophagy and cell stress protection, thereby establishing a novel LMX1B-autophagy regulatory axis that contributes to mDAN maintenance and survival in the adult brain.


Autophagy-Related Protein 8 Family , LIM-Homeodomain Proteins , Mesencephalon , Neurons , Transcription Factors , Humans , Autophagy , Brain/cytology , Brain/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Mesencephalon/metabolism , Transcription Factors/metabolism , Autophagy-Related Protein 8 Family/genetics , Neurons/cytology
4.
Front Neurosci ; 16: 851058, 2022.
Article En | MEDLINE | ID: mdl-35651633

Parkinson's disease (PD) is the second most common neurodegenerative disease and affects approximately 2-3% of the population over the age of 65. PD is characterised by the loss of dopaminergic neurons from the substantia nigra, leading to debilitating motor symptoms including bradykinesia, tremor, rigidity, and postural instability. PD also results in a host of non-motor symptoms such as cognitive decline, sleep disturbances and depression. Although existing therapies can successfully manage some motor symptoms for several years, there is still no means to halt progression of this severely debilitating disorder. Animal models used to replicate aspects of PD have contributed greatly to our current understanding but do not fully replicate pathological mechanisms as they occur in patients. Because of this, there is now great interest in the use of human brain-based models to help further our understanding of disease processes. Human brain-based models include those derived from embryonic stem cells, patient-derived induced neurons, induced pluripotent stem cells and brain organoids, as well as post-mortem tissue. These models facilitate in vitro analysis of disease mechanisms and it is hoped they will help bridge the existing gap between bench and bedside. This review will discuss the various human brain-based models utilised in PD research today and highlight some of the key breakthroughs they have facilitated. Furthermore, the potential caveats associated with the use of human brain-based models will be detailed.

5.
J Vis Exp ; (176)2021 10 02.
Article En | MEDLINE | ID: mdl-34661566

In Parkinson's disease, progressive dysfunction and degeneration of dopamine neurons in the ventral midbrain cause life-changing symptoms. Neuronal degeneration has diverse causes in Parkinson's, including non-cell autonomous mechanisms mediated by astrocytes. Throughout the CNS, astrocytes are essential for neuronal survival and function, as they maintain metabolic homeostasis in the neural environment. Astrocytes interact with the immune cells of the CNS, microglia, to modulate neuroinflammation, which is observed from the earliest stages of Parkinson's, and has a direct impact on the progression of its pathology. In diseases with a chronic neuroinflammatory element, including Parkinson's, astrocytes acquire a neurotoxic phenotype, and thus enhance neurodegeneration. Consequently, astrocytes are a potential therapeutic target to slow or halt disease, but this will require a deeper understanding of their properties and roles in Parkinson's. Accurate models of human ventral midbrain astrocytes for in vitro study are therefore urgently required. We have developed a protocol to generate high purity cultures of ventral midbrain-specific astrocytes (vmAstros) from hiPSCs that can be used for Parkinson's research. vmAstros can be routinely produced from multiple hiPSC lines, and express specific astrocytic and ventral midbrain markers. This protocol is scalable, and thus suitable for high-throughput applications, including for drug screening. Crucially, the hiPSC derived-vmAstros demonstrate immunomodulatory characteristics typical of their in vivo counterparts, enabling mechanistic studies of neuroinflammatory signaling in Parkinson's.


Induced Pluripotent Stem Cells , Astrocytes , Dopaminergic Neurons , Humans , Mesencephalon , Microglia
6.
Front Neurol ; 12: 666737, 2021.
Article En | MEDLINE | ID: mdl-34122308

Parkinson's disease (PD), the second most common neurodegenerative disease, is characterised by the motor symptoms of bradykinesia, rigidity and resting tremor and non-motor symptoms of sleep disturbances, constipation, and depression. Pathological hallmarks include neuroinflammation, degeneration of dopaminergic neurons in the substantia nigra pars compacta, and accumulation of misfolded α-synuclein proteins as intra-cytoplasmic Lewy bodies and neurites. Microglia and astrocytes are essential to maintaining homeostasis within the central nervous system (CNS), including providing protection through the process of gliosis. However, dysregulation of glial cells results in disruption of homeostasis leading to a chronic pro-inflammatory, deleterious environment, implicated in numerous CNS diseases. Recent evidence has demonstrated a role for peripheral immune cells, in particular T lymphocytes in the pathogenesis of PD. These cells infiltrate the CNS, and accumulate in the substantia nigra, where they secrete pro-inflammatory cytokines, stimulate surrounding immune cells, and induce dopaminergic neuronal cell death. Indeed, a greater understanding of the integrated network of communication that exists between glial cells and peripheral immune cells may increase our understanding of disease pathogenesis and hence provide novel therapeutic approaches.

7.
Autophagy ; 17(4): 855-871, 2021 04.
Article En | MEDLINE | ID: mdl-32286126

Macroautophagy/autophagy cytoplasmic quality control pathways are required during neural development and are critical for the maintenance of functional neuronal populations in the adult brain. Robust evidence now exists that declining neuronal autophagy pathways contribute to human neurodegenerative diseases, including Parkinson disease (PD). Reliable and relevant human neuronal model systems are therefore needed to understand the biology of disease-vulnerable neural populations, to decipher the underlying causes of neurodegenerative disease, and to develop assays to test therapeutic interventions in vitro. Human induced pluripotent stem cell (hiPSC) neural model systems can meet this demand: they provide a renewable source of material for differentiation into regional neuronal sub-types for functional assays; they can be expanded to provide a platform for screening, and they can potentially be optimized for transplantation/neurorestorative therapy. So far, however, hiPSC differentiation protocols for the generation of ventral midbrain dopaminergic neurons (mDANs) - the predominant neuronal sub-type afflicted in PD - have been somewhat restricted by poor efficiency and/or suitability for functional and/or imaging-based in vitro assays. Here, we describe a reliable, monolayer differentiation protocol for the rapid and reproducible production of high numbers of mDANs from hiPSC in a format that is amenable for autophagy/mitophagy research. We characterize these cells with respect to neuronal differentiation and macroautophagy capability and describe qualitative and quantitative assays for the study of autophagy and mitophagy in these important cells.Abbreviations: AA: ascorbic acid; ATG: autophagy-related; BDNF: brain derived neurotrophic factor; CCCP: carbonyl cyanide m-chlorophenylhydrazone; dbcAMP: dibutyryl cAMP; DAN: dopaminergic neuron; DAPI: 4',6-diamidino-2-phenylindole; DAPT: N-[N-(3,5-difluorophenacetyl)-L-alanyl]-sphenylglycine; DLG4/PSD95: discs large MAGUK scaffold protein 4; DMEM: Dulbecco's modified eagle's medium; EB: embryoid body; ECAR: extracellular acidification rate; EGF: epidermal growth factor; FACS: fluorescence-activated cell sorting; FCCP: arbonyl cyanide p-triflouromethoxyphenylhydrazone; FGF: fibroblast growth factor; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GDNF: glia cell derived neurotrophic factor; hiPSC: human induced pluripotent stem cell; LAMP2A: lysosomal associated membrane protein 2A; LT-R: LysoTracker Red; MAP1LC3: microtubule associated protein 1 light chain 3; mDAN: midbrain dopaminergic neuron; MEF: mouse embryonic fibroblast; MT-GR: MitoTracker Green; MT-R: MitoTracker Red; NAS2: normal SNCA2; NEM: neuroprogenitor expansion media; NR4A2/NURR1: nuclear receptor subfamily group A member 2; OA: oligomycin and antimycin A; OCR: oxygen consumption rate; PD: Parkinson disease; SHH: sonic hedgehog signaling molecule; SNCA/α-synuclein: synuclein alpha; TH: tyrosine hydroxylase; VTN: vitronectin.


Autophagy , Cell Culture Techniques , Dopaminergic Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Mitophagy , Autophagy/drug effects , Autophagy/genetics , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cells, Cultured , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/ultrastructure , Gene Expression Regulation/drug effects , Growth Cones/drug effects , Growth Cones/ultrastructure , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mesencephalon/cytology , Mitochondria/drug effects , Mitochondria/metabolism , Mitophagy/drug effects , Mitophagy/genetics , Oxygen Consumption/drug effects , Oxygen Consumption/genetics , Pyridines/pharmacology , Pyrimidines/pharmacology , Time Factors
8.
Methods Mol Biol ; 1880: 257-280, 2019.
Article En | MEDLINE | ID: mdl-30610703

To appreciate the positive or negative impact of autophagy during the initiation and progression of human diseases, the isolation or de novo generation of appropriate cell types is required to support focused in vitro assays. In human neurodegenerative diseases such as Parkinson's disease (PD), specific subsets of acutely sensitive neurons become susceptible to stress-associated operational decline and eventual cell death, emphasizing the need for functional studies in those vulnerable groups of neurons. In PD, a class of dopaminergic neurons in the ventral midbrain (mDANs) is affected. To study these, human-induced pluripotent stem cells (hiPSCs) have emerged as a valuable tool, as they enable the establishment and study of mDAN biology in vitro. In this chapter, we describe a stepwise protocol for the generation of mDANs from hiPSCs using a monolayer culture system. We then outline how imaging-based autophagy assessment methodologies can be applied to these neurons, thereby providing a detailed account of the application of imaging-based autophagy assays to human iPSC-derived mDANs.


Autophagy , Dopaminergic Neurons/cytology , Induced Pluripotent Stem Cells/cytology , Mesencephalon/cytology , Microscopy, Fluorescence/methods , Neurogenesis , Cell Culture Techniques/methods , Cells, Cultured , Dopaminergic Neurons/pathology , Fluorescent Antibody Technique/methods , Humans , Induced Pluripotent Stem Cells/pathology , Mesencephalon/pathology , Parkinson Disease/pathology , Tissue Fixation/methods
9.
Results Probl Cell Differ ; 66: 3-20, 2018.
Article En | MEDLINE | ID: mdl-30209653

Neural stem cells isolated from the developing and adult brain are an ideal source of cells for use in clinical applications such as cell replacement therapy. The clear advantage of these cells over the more commonly utilised embryonic and pluripotent stem cells is that they are already neurally committed. Of particular importance is the fact that these cells don't require the same level of in vitro culture that can be cost and labour intensive. Foetal neural stem cells can be readily derived from the foetal brain and expand in culture over time. Similarly, adult stem cells have been explored for their potential in vitro and in vivo animal models. In this chapter we identify the progress made in developing these cells as well as the advantages of taking them forward for clinical use.


Brain/cytology , Brain/embryology , Neural Stem Cells/cytology , Adult , Animals , Cell Differentiation , Fetus/cytology , Humans
10.
Article En | MEDLINE | ID: mdl-29786550

Effective and efficient generation of human neural stem cells and subsequently functional neural populations from pluripotent stem cells has facilitated advancements in the study of human development and disease modelling. This review will discuss the established protocols for the generation of defined neural populations including regionalized neurons and astrocytes, oligodendrocytes and microglia. Early protocols were established in embryonic stem cells (ESC) but the discovery of induced pluripotent stem cells (iPSC) in 2006 provided a new platform for modelling human disorders of the central nervous system (CNS). The ability to produce patient- and disease-specific iPSC lines has created a new age of disease modelling. Human iPSC may be derived from adult somatic cells and subsequently patterned into numerous distinct cell types. The ability to derive defined and regionalized neural populations from iPSC provides a powerful in vitro model of CNS disorders.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Cell Culture Techniques/methods , Cell Differentiation , Induced Pluripotent Stem Cells/physiology , Neural Stem Cells/physiology , Humans
11.
Nat Nanotechnol ; 13(5): 427-433, 2018 05.
Article En | MEDLINE | ID: mdl-29610530

The potential for maternal nanoparticle (NP) exposures to cause developmental toxicity in the fetus without the direct passage of NPs has previously been shown, but the mechanism remained elusive. We now demonstrate that exposure of cobalt and chromium NPs to BeWo cell barriers, an in vitro model of the human placenta, triggers impairment of the autophagic flux and release of interleukin-6. This contributes to the altered differentiation of human neural progenitor cells and DNA damage in the derived neurons and astrocytes. Crucially, neuronal DNA damage is mediated by astrocytes. Inhibiting the autophagic degradation in the BeWo barrier by overexpression of the dominant-negative human ATG4BC74A significantly reduces the levels of DNA damage in astrocytes. In vivo, indirect NP toxicity in mice results in neurodevelopmental abnormalities with reactive astrogliosis and increased DNA damage in the fetal hippocampus. Our results demonstrate the potential importance of autophagy to elicit NP toxicity and the risk of indirect developmental neurotoxicity after maternal NP exposure.


Astrocytes/metabolism , Models, Biological , Nanoparticles/toxicity , Neurons/metabolism , Neurotoxicity Syndromes/metabolism , Placenta/pathology , Pregnancy Complications/metabolism , Animals , Astrocytes/pathology , Cell Line , Female , Humans , Male , Mice , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Neurons/pathology , Neurotoxicity Syndromes/pathology , Pregnancy , Pregnancy Complications/chemically induced , Pregnancy Complications/pathology
12.
Mol Ther ; 25(10): 2404-2414, 2017 10 04.
Article En | MEDLINE | ID: mdl-28927576

Abnormal alpha-synuclein (α-synuclein) expression and aggregation is a key characteristic of Parkinson's disease (PD). However, the exact mechanism(s) linking α-synuclein to the other central feature of PD, dopaminergic neuron loss, remains unclear. Therefore, improved cell and in vivo models are needed to investigate the role of α-synuclein in dopaminergic neuron loss. MicroRNA-7 (miR-7) regulates α-synuclein expression by binding to the 3' UTR of the Synuclein Alpha Non A4 Component of Amyloid Precursor (SNCA) gene and inhibiting its translation. We show that miR-7 is decreased in the substantia nigra of patients with PD and, therefore, may play an essential role in the regulation of α-synuclein expression. Furthermore, we have found that lentiviral-mediated expression of miR-7 complementary binding sites to stably induce a loss of miR-7 function results in an increase in α-synuclein expression in vitro and in vivo. We have also shown that depletion of miR-7 using a miR-decoy produces a loss of nigral dopaminergic neurons accompanied by a reduction of striatal dopamine content. These data suggest that miR-7 has an important role in the regulation of α-synuclein and dopamine physiology and may provide a new paradigm to study the pathology of PD.


Dopaminergic Neurons/metabolism , MicroRNAs/metabolism , Substantia Nigra/metabolism , alpha-Synuclein/metabolism , Animals , Humans , Lentivirus/genetics , Locomotion/genetics , Locomotion/physiology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , alpha-Synuclein/genetics
13.
Cells ; 6(3)2017 Aug 11.
Article En | MEDLINE | ID: mdl-28800101

Human induced pluripotent stem cells (hiPSCs) are invaluable tools for research into the causes of diverse human diseases, and have enormous potential in the emerging field of regenerative medicine. Our ability to reprogramme patient cells to become hiPSCs, and to subsequently direct their differentiation towards those classes of neurons that are vulnerable to stress, is revealing how genetic mutations cause changes at the molecular level that drive the complex pathogeneses of human neurodegenerative diseases. Autophagy dysregulation is considered to be a major contributor in neural decline during the onset and progression of many human neurodegenerative diseases, meaning that a better understanding of the control of non-selective and selective autophagy pathways (including mitophagy) in disease-affected classes of neurons is needed. To achieve this, it is essential that the methodologies commonly used to study autophagy regulation under basal and stressed conditions in standard cell-line models are accurately applied when using hiPSC-derived neuronal cultures. Here, we discuss the roles and control of autophagy in human stem cells, and how autophagy contributes to neural differentiation in vitro. We also describe how autophagy-monitoring tools can be applied to hiPSC-derived neurons for the study of human neurodegenerative disease in vitro.

14.
Brain Pathol ; 27(4): 530-544, 2017 07.
Article En | MEDLINE | ID: mdl-28585380

Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part of the tripartite synapse, provide metabolic and neurotrophic support, recycle neurotransmitters, modulate blood flow and brain blood barrier permeability and are implicated in the mechanisms of neurodegeneration. Using pluripotent stem cells (PSC), it is now possible to study regionalised human astrocytes in a dish and to model their contribution to neurodevelopmental and neurodegenerative disorders. The evidence challenging the traditional neuron-centric view of degeneration within the CNS is reviewed here, with focus on recent findings and disease phenotypes from human PSC-derived astrocytes. In addition we compare current protocols for the generation of regionalised astrocytes and how these can be further refined by our growing knowledge of neurodevelopment. We conclude by proposing a functional and phenotypical characterisation of PSC-derived astrocytic cultures that is critical for reproducible and robust disease modelling.


Astrocytes/physiology , Brain/pathology , Disease Models, Animal , Induced Pluripotent Stem Cells/physiology , Neurodegenerative Diseases/pathology , Neurodevelopmental Disorders/pathology , Animals , Humans
15.
Int J Neurosci ; 126(11): 955-62, 2016 Nov.
Article En | MEDLINE | ID: mdl-26824870

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons of the substantia nigra pars compacta in the brain with an unknown cause. Current pharmacological treatments for PD are only symptomatic and there is still no cure for this disease nowadays. In fact, transplantation of human fetal ventral midbrain cells into PD brains has provided a proof of concept that cell replacement therapy can be used for some PD patients, beneficial for improving their symptoms. However, the ethical and practical issues of human fetal tissue will inevitably limit its widespread clinical use. Therefore, it is essential to find alternative cell sources for the future cell transplantation for PD patients. With recent development in stem cell technology, here, we review the different types of stem cells and their main properties currently explored, which could be developed as a possible cell therapy for PD treatment.


Parkinson Disease/therapy , Stem Cell Transplantation , Humans , Stem Cell Transplantation/trends
16.
Nat Med ; 22(1): 54-63, 2016 Jan.
Article En | MEDLINE | ID: mdl-26618722

Mitochondrial dysfunction represents a critical step during the pathogenesis of Parkinson's disease (PD), and increasing evidence suggests abnormal mitochondrial dynamics and quality control as important underlying mechanisms. The VPS35 gene, which encodes a key component of the membrane protein-recycling retromer complex, is the third autosomal-dominant gene associated with PD. However, how VPS35 mutations lead to neurodegeneration remains unclear. Here we demonstrate that PD-associated VPS35 mutations caused mitochondrial fragmentation and cell death in cultured neurons in vitro, in mouse substantia nigra neurons in vivo and in human fibroblasts from an individual with PD who has the VPS35(D620N) mutation. VPS35-induced mitochondrial deficits and neuronal dysfunction could be prevented by inhibition of mitochondrial fission. VPS35 mutants showed increased interaction with dynamin-like protein (DLP) 1, which enhanced turnover of the mitochondrial DLP1 complexes via the mitochondria-derived vesicle-dependent trafficking of the complexes to lysosomes for degradation. Notably, oxidative stress increased the VPS35-DLP1 interaction, which we also found to be increased in the brains of sporadic PD cases. These results revealed a novel cellular mechanism for the involvement of VPS35 in mitochondrial fission, dysregulation of which is probably involved in the pathogenesis of familial, and possibly sporadic, PD.


GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Parkinson Disease/genetics , Vesicular Transport Proteins/genetics , Aged , Aged, 80 and over , Animals , Blotting, Western , Cell Line, Tumor , Dynamins/metabolism , Female , Fluorescence Recovery After Photobleaching , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , In Vitro Techniques , Male , Mice , Microscopy, Electron, Transmission , Microscopy, Immunoelectron , Mitochondria/pathology , Neurons , Oxidative Stress , Parkinson Disease/metabolism , Parkinson Disease/pathology , Rats , Substantia Nigra/cytology , Time-Lapse Imaging
17.
Biomaterials ; 61: 139-49, 2015 Aug.
Article En | MEDLINE | ID: mdl-26002787

Brain Computer Interfaces (BCI) currently represent a field of intense research aimed both at understanding neural circuit physiology and at providing functional therapy for traumatic or degenerative neurological conditions. Due to its chemical inertness, biocompatibility and stability, diamond is currently being actively investigated as a potential substrate material for culturing cells and for use as the electrically active component of a neural sensor. Here we provide a protocol for the differentiation of mature, electrically active neurons on microcrystalline synthetic thin-film diamond substrates starting from undifferentiated pluripotent stem cells. Furthermore, we investigate the optimal characteristics of the diamond microstructure for long-term neuronal sustainability. We also analyze the effect of boron as a dopant for such a culture. We found that the diamond crystalline structure has a significant influence on the neuronal culture unlike the boron doping. Specifically, small diamond microcrystals promote higher neurite density formation. We find that boron incorporated into the diamond does not influence the neurite density and has no deleterious effect on cell survival.


Batch Cell Culture Techniques/methods , Nanodiamonds/chemistry , Neurons/cytology , Neurons/physiology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/physiology , Biocompatible Materials/chemical synthesis , Cell Differentiation/physiology , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Humans , Materials Testing , Nanodiamonds/ultrastructure , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , Particle Size , Surface Properties
18.
Neurogenetics ; 16(3): 215-221, 2015 Jul.
Article En | MEDLINE | ID: mdl-25894286

The composition of the neuronal cell surface dictates synaptic plasticity and thereby cognitive development. This remodeling of the synapses is governed by the endocytic network which internalize transmembrane proteins, then sort them back to the cell surface or carry them to the lysosome for degradation. The multi-protein retromer complex is central to this selection, capturing specific transmembrane proteins and remodeling the cell membrane to form isolated cargo-enriched transport carriers. We investigated a consanguineous family with four patients who presented in infancy with intractable myoclonic epilepsy and lack of psychomotor development. Using exome analysis, we identified a homozygous deleterious mutation in SNX27, which encodes sorting nexin 27, a retromer cargo adaptor. In western analysis of patient fibroblasts, the encoded mutant protein was expressed at an undetectable level when compared with a control sample. The patients' presentation and clinical course recapitulate that reported for the SNX27 knock-out mouse. Since the cargo proteins for SNX27-mediated sorting include subunits of ionotropic glutamate receptors and endosome-to-cell surface synaptic insertion of AMPA receptors is severely perturbed in SNX27(-/-) neurons, it is proposed that at least part of the neurological aberrations observed in the patients is attributed to defective sorting of ionotropic glutamate receptors. SNX27 deficiency is now added to the growing list of neurodegenerative disorders associated with retromer dysfunction.


Epilepsies, Myoclonic/genetics , Neurodegenerative Diseases/genetics , Sorting Nexins/deficiency , Sorting Nexins/genetics , Brain/pathology , Brain/physiopathology , Female , Fibroblasts/metabolism , Humans , Infant , Infant, Newborn , Male , Mutation , Pedigree
19.
Mol Ther ; 23(2): 244-54, 2015 Feb.
Article En | MEDLINE | ID: mdl-25369767

Cerebral Dopamine Neurotrophic Factor (CDNF) and Mesencephalic Astrocyte-derived Neurotrophic factor (MANF) are members of a recently discovered family of neurotrophic factors (NTFs). Here, we used intranigral or intrastriatal lentiviral vector-mediated expression to evaluate their efficacy at protecting dopaminergic function in the 6-OHDA model of Parkinson's disease (PD). In contrast to the well-studied Glial-Derived Neurotrophic Factor (GDNF), no beneficial effects were demonstrated by striatal overexpression of either protein. Interestingly, nigral overexpression of CDNF decreased amphetamine-induced rotations and increased tyroxine hydroxylase (TH) striatal fiber density but had no effect on numbers of TH(+) cells in the SN. Nigral MANF overexpression had no effect on amphetamine-induced rotations or TH striatal fiber density but resulted in a significant preservation of TH(+) cells. Combined nigral overexpression of both factors led to a robust reduction in amphetamine-induced rotations, greater increase in striatal TH-fiber density and significant protection of TH(+) cells in the SN. We conclude that nigral CDNF and MANF delivery is more efficacious than striatal delivery. This is also the first study to demonstrate that combined NTF can have synergistic effects that result in enhanced neuroprotection, suggesting that multiple NTF delivery may be more efficacious for the treatment of PD than the single NTF approaches attempted so far.


Gene Expression , Nerve Growth Factors/genetics , Parkinson Disease/genetics , Substantia Nigra/metabolism , Animals , Behavior, Animal , Cell Line , Disease Models, Animal , Gene Order , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Immunohistochemistry , Lentivirus/genetics , Nerve Growth Factors/metabolism , Neurons/metabolism , Oxidopamine/adverse effects , Parkinson Disease/metabolism , Parkinson Disease/therapy , Rats , Recombinant Fusion Proteins , Substantia Nigra/pathology , Transduction, Genetic , Tyrosine 3-Monooxygenase/metabolism
20.
Curr Biol ; 24(14): 1670-1676, 2014 07 21.
Article En | MEDLINE | ID: mdl-24980502

Retromer is a protein assembly that plays a central role in orchestrating export of transmembrane-spanning cargo proteins from endosomes into retrieval pathways destined for the Golgi apparatus and the plasma membrane [1]. Recently, a specific mutation in the retromer component VPS35, VPS35(D620N), has linked retromer dysfunction to familial autosomal dominant and sporadic Parkinson disease [2, 3]. However, the effect of this mutation on retromer function remains poorly characterized. Here we established that in cells expressing VPS35(D620N) there is a perturbation in endosome-to-TGN transport but not endosome-to-plasma membrane recycling, which we confirm in patient cells harboring the VPS35(D620N) mutation. Through comparative stable isotope labeling by amino acids in cell culture (SILAC)-based analysis of wild-type VPS35 versus the VPS35(D620N) mutant interactomes, we establish that the major defect of the D620N mutation lies in the association to the actin-nucleating Wiskott-Aldrich syndrome and SCAR homolog (WASH) complex. Moreover, using isothermal calorimetry, we establish that the primary defect of the VPS35(D620N) mutant is a 2.2 ± 0.5-fold decrease in affinity for the WASH complex component FAM21. These data define the primary molecular defect in retromer assembly that arises from the VPS35(D620N) mutation and, by revealing functional effects on retromer-mediated endosome-to-TGN transport, provide new insight into retromer deregulation in Parkinson disease.


Microfilament Proteins/metabolism , Parkinson Disease/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Ankyrin Repeat/genetics , Antigens, Neoplasm/metabolism , Binding Sites/genetics , Cell Line, Tumor , Cells, Cultured , Endosomes/metabolism , Golgi Apparatus/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Molecular Chaperones/metabolism , Mutation , Protein Binding/genetics , Protein Transport
...