Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
World Neurosurg ; 184: e354-e359, 2024 04.
Article in English | MEDLINE | ID: mdl-38296043

ABSTRACT

BACKGROUND: Modic changes are pathologies that are common in the population and cause low back pain. The aim of the study is to analyze the modic changes detected in magnetic resonance imaging (MRI) using deep learning modalities. METHODS: The sagittal T1, sagittal and axial T2-weighted lumbar MRI images of 307 patients, of which 125 were female and 182 were male, aged 19-86 years, who underwent MRI examination between 2016-2021 were analyzed. Modic changes (MC) were categorized and marked according to signal changes. Our study consists of 2 independent stages: classification and segmentation. The categorized data were first classified using convolutional neural network (CNN) architectures such as DenseNet-121, DenseNet-169, and VGG-19. In the next stage, masks were removed by segmentation using U-Net, which is the CNN architecture, with image processing programs on the marked images. RESULTS: During the classification stage, the success rates for modic type 1, type 2, and type 3 changes were 98%, 96%, 100% in DenseNet-121, 100%, 94%, 100% in DenseNet-169, and 98%, 92%, 97% in VGG-19, respectively. At the segmentation phase, the success rate was 71% with the U-Net architecture. CONCLUSIONS: Evaluation of MRI findings of MC in the etiology of lower back pain with deep learning architectures can significantly reduce the workload of the radiologist by providing ease of diagnosis.


Subject(s)
Deep Learning , Low Back Pain , Humans , Male , Female , Magnetic Resonance Imaging/methods , Low Back Pain/diagnosis , Neural Networks, Computer , Lumbosacral Region/pathology
2.
Neural Comput Appl ; 34(7): 5349-5365, 2022.
Article in English | MEDLINE | ID: mdl-35250180

ABSTRACT

Early diagnosis of COVID-19, the new coronavirus disease, is considered important for the treatment and control of this disease. The diagnosis of COVID-19 is based on two basic approaches of laboratory and chest radiography, and there has been a significant increase in studies performed in recent months by using chest computed tomography (CT) scans and artificial intelligence techniques. Classification of patient CT scans results in a serious loss of radiology professionals' valuable time. Considering the rapid increase in COVID-19 infections, in order to automate the analysis of CT scans and minimize this loss of time, in this paper a new method is proposed using BO (BO)-based MobilNetv2, ResNet-50 models, SVM and kNN machine learning algorithms. In this method, an accuracy of 99.37% was achieved with an average precision of 99.38%, 99.36% recall and 99.37% F-score on datasets containing COVID and non-COVID classes. When we examine the performance results of the proposed method, it is predicted that it can be used as a decision support mechanism with high classification success for the diagnosis of COVID-19 with CT scans.

3.
Chaos Solitons Fractals ; 151: 111310, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34376926

ABSTRACT

COVID-19, one of the biggest diseases of our age, continues to spread rapidly around the world. Studies continue rapidly for the diagnosis and treatment of this disease. It is of great importance that individuals who are infected with this virus be isolated from the rest of the society so that the disease does not spread further. In addition to the tests performed in the detection process of the patients, X-ray and computed tomography are also used. In this study, a new hybrid model that can diagnose COVID-19 from computed tomography images created using EfficientNet, one of the current deep learning models, with a model consisting of attention blocks is proposed. In the first step of this new model, channel attention, spatial attention, and residual blocks are used to extract the most important features from the images. The extracted features are combined in accordance with the hyper-column technique. The combined features are given as input to the EfficientNet models in the second step of the model. The deep features obtained from this proposed hybrid model were classified with the Support Vector Machine classifier after feature selection. Principal Components Analysis was used for feature selection. The approach can accurately predict COVID-19 with a 99% accuracy rate. The first four versions of EfficientNet are used in the approach. In addition, Bayesian optimization was used in the hyper parameter estimation of the Support Vector Machine classifier. Comparative performance analysis of the approach with other approaches in the field is given.

4.
Biomed Signal Process Control ; 64: 102257, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33042210

ABSTRACT

COVID-19 is a disease that causes symptoms in the lungs and causes deaths around the world. Studies are ongoing for the diagnosis and treatment of this disease, which is defined as a pandemic. Early diagnosis of this disease is important for human life. This process is progressing rapidly with diagnostic studies based on deep learning. Therefore, to contribute to this field, a deep learning-based approach that can be used for early diagnosis of the disease is proposed in our study. In this approach, a data set consisting of 3 classes of COVID19, normal and pneumonia lung X-ray images was created, with each class containing 364 images. Pre-processing was performed using the image contrast enhancement algorithm on the prepared data set and a new data set was obtained. Feature extraction was completed from this data set with deep learning models such as AlexNet, VGG19, GoogleNet, and ResNet. For the selection of the best potential features, two metaheuristic algorithms of binary particle swarm optimization and binary gray wolf optimization were used. After combining the features obtained in the feature selection of the enhancement data set, they were classified using SVM. The overall accuracy of the proposed approach was obtained as 99.38%. The results obtained by verification with two different metaheuristic algorithms proved that the approach we propose can help experts during COVID-19 diagnostic studies.

SELECTION OF CITATIONS
SEARCH DETAIL