Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(50): e2302845120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38055741

ABSTRACT

It has previously been reported that antioxidant vitamins can help reduce the risk of vision loss associated with progression to advanced age-related macular degeneration (AMD), a leading cause of visual impairment among the elderly. Nonetheless, how oxidative stress contributes to the development of choroidal neovascularization (CNV) in some AMD patients and geographic atrophy (GA) in others is poorly understood. Here, we provide evidence demonstrating that oxidative stress cooperates with hypoxia to synergistically stimulate the accumulation of hypoxia-inducible factor (HIF)-1α in the retinal pigment epithelium (RPE), resulting in increased expression of the HIF-1-dependent angiogenic mediators that promote CNV. HIF-1 inhibition blocked the expression of these angiogenic mediators and prevented CNV development in an animal model of ocular oxidative stress, demonstrating the pathological role of HIF-1 in response to oxidative stress stimulation in neovascular AMD. While human-induced pluripotent stem cell (hiPSC)-derived RPE monolayers exposed to chemical oxidants resulted in disorganization and disruption of their normal architecture, RPE cells proved remarkably resistant to oxidative stress. Conversely, equivalent doses of chemical oxidants resulted in apoptosis of hiPSC-derived retinal photoreceptors. Pharmacologic inhibition of HIF-1 in the mouse retina enhanced-while HIF-1 augmentation reduced-photoreceptor apoptosis in two mouse models for oxidative stress, consistent with a protective role for HIF-1 in photoreceptors in patients with advanced dry AMD. Collectively, these results suggest that in patients with AMD, increased expression of HIF-1α in RPE exposed to oxidative stress promotes the development of CNV, but inadequate HIF-1α expression in photoreceptors contributes to the development of GA.


Subject(s)
Choroidal Neovascularization , Geographic Atrophy , Wet Macular Degeneration , Mice , Animals , Humans , Aged , Retinal Pigment Epithelium/metabolism , Hypoxia-Inducible Factor 1/metabolism , Angiogenesis Inhibitors , Wet Macular Degeneration/metabolism , Vascular Endothelial Growth Factor A/metabolism , Visual Acuity , Choroidal Neovascularization/genetics , Choroidal Neovascularization/prevention & control , Choroidal Neovascularization/metabolism , Oxidants/metabolism , Hypoxia/metabolism
2.
Invest Ophthalmol Vis Sci ; 57(5): ORSFd1-9, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27116661

ABSTRACT

Stem cells offer unprecedented opportunities for the development of strategies geared toward the treatment of retinal degenerative diseases. A variety of cellular sources have been investigated for various potential clinical applications, including tissue regeneration, disease modeling, and screening for non-cell-based therapeutic agents. As the field transitions from more than a decade of preclinical research to the first phase I/II clinical trials, we provide a concise overview of the stem cell sources most commonly used, weighing their therapeutic potential on the basis of their technical strengths/limitations, their ethical implications, and the extent of the progress achieved to date. This article serves as a framework for further in-depth analyses presented in the following chapters of this Special Issue.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Retinal Degeneration/surgery , Stem Cell Transplantation/methods , Stem Cells/cytology , Bone Marrow Cells/cytology , Ependymoglial Cells/cytology , Fetal Stem Cells/cytology , Humans , Multipotent Stem Cells/transplantation , Neural Stem Cells/cytology , Pluripotent Stem Cells/transplantation , Retinal Pigment Epithelium/cytology , Umbilical Cord/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...