Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Psychol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858823

ABSTRACT

Explainable AI (XAI) methods provide explanations of AI models, but our understanding of how they compare with human explanations remains limited. Here, we examined human participants' attention strategies when classifying images and when explaining how they classified the images through eye-tracking and compared their attention strategies with saliency-based explanations from current XAI methods. We found that humans adopted more explorative attention strategies for the explanation task than the classification task itself. Two representative explanation strategies were identified through clustering: One involved focused visual scanning on foreground objects with more conceptual explanations, which contained more specific information for inferring class labels, whereas the other involved explorative scanning with more visual explanations, which were rated higher in effectiveness for early category learning. Interestingly, XAI saliency map explanations had the highest similarity to the explorative attention strategy in humans, and explanations highlighting discriminative features from invoking observable causality through perturbation had higher similarity to human strategies than those highlighting internal features associated with higher class score. Thus, humans use both visual and conceptual information during explanation, which serve different purposes, and XAI methods that highlight features informing observable causality match better with human explanations, potentially more accessible to users.

2.
Article in English | MEDLINE | ID: mdl-37022820

ABSTRACT

Diagnosing the cluster-based performance of large-scale deep neural network (DNN) models during training is essential for improving training efficiency and reducing resource consumption. However, it remains challenging due to the incomprehensibility of the parallelization strategy and the sheer volume of complex data generated in the training processes. Prior works visually analyze performance profiles and timeline traces to identify anomalies from the perspective of individual devices in the cluster, which is not amenable for studying the root cause of anomalies. In this paper, we present a visual analytics approach that empowers analysts to visually explore the parallel training process of a DNN model and interactively diagnose the root cause of a performance issue. A set of design requirements is gathered through discussions with domain experts. We propose an enhanced execution flow of model operators for illustrating parallelization strategies within the computational graph layout. We design and implement an enhanced Marey's graph representation, which introduces the concept of time-span and a banded visual metaphor to convey training dynamics and help experts identify inefficient training processes. We also propose a visual aggregation technique to improve visualization efficiency. We evaluate our approach using case studies, a user study and expert interviews on two large-scale models run in a cluster, namely, the PanGu- α 13B model (40 layers), and the Resnet model (50 layers).

3.
Article in English | MEDLINE | ID: mdl-37015673

ABSTRACT

A computational graph in a deep neural network (DNN) denotes a specific data flow diagram (DFD) composed of many tensors and operators. Existing toolkits for visualizing computational graphs are not applicable when the structure is highly complicated and large-scale (e.g., BERT [1]). To address this problem, we propose leveraging a suite of visual simplification techniques, including a cycle-removing method, a module-based edge-pruning algorithm, and an isomorphic subgraph stacking strategy. We design and implement an interactive visualization system that is suitable for computational graphs with up to 10 thousand elements. Experimental results and usage scenarios demonstrate that our tool reduces 60% elements on average and hence enhances the performance for recognizing and diagnosing DNN models. Our contributions are integrated into an open-source DNN visualization toolkit, namely, MindInsight [2].

SELECTION OF CITATIONS
SEARCH DETAIL