Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Sci Total Environ ; : 174333, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945231

ABSTRACT

The rhizosphere microorganisms of blueberry plants have long coexisted with their hosts under distinctively acidic soil conditions, exerting a profound influence on host performance through mutualistic symbiotic interactions. Meanwhile, plants can regulate rhizosphere microorganisms by exerting host effects to meet the functional requirements of plant growth and development. However, it remains unknown how the developmental stages of blueberry plants affect the structure, function, and interactions of the rhizosphere microbial communities. Here, we examined bacterial communities and root metabolites at three developmental stages (flower and leaf bud development stage, fruit growth and development stage, and fruit maturation stage) of blueberry plants. The results revealed that the Shannon and Chao 1 indices as well as community composition varied significantly across all three developmental stages. The relative abundance of Actinobacteria significantly increased by 10 % (p < 0.05) from stage 1 to stage 2, whereas that of Proteobacteria decreased significantly. The co-occurrence network analysis revealed a relatively complex network with 1179 edges and 365 nodes in the stage 2. Niche breadth was highest at stage 2, while niche overlap tended to increase as the plant developed. Furthermore, the untargeted metabolome analysis revealed that the number of differential metabolites of vitamins, nucleic acids, steroids, and lipids increased between stage 1 to stage2 and stage 2 to stage 3, while those for differential metabolites of carbohydrates and peptides decreased. Significant changes in expression levels of levan, L-glutamic acid, indoleacrylic acid, oleoside 11-methyl ester, threo-syringoylglycerol, gingerglycolipid B, and bovinic acid were highly correlated with the bacterial community structure. Collectively, our study reveals that significant alterations in dominant bacterial taxa are strongly correlated with the dynamics of root metabolites. These findings lay the groundwork for developing prebiotic products to enhance the beneficial effects of root microorganisms and boosting blueberry productivity via a sustainable approach.

2.
Microbiol Res ; 286: 127789, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38870619

ABSTRACT

Plants have developed intricate immune mechanisms to impede Phytophthora colonization. In response, Phytophthora secretes RxLR effector proteins that disrupt plant defense and promote infection. The specific molecular interactions through which Phytophthora RxLR effectors undermine plant immunity, however, remain inadequately defined. In this study, we delineate the role of the nuclear-localized RxLR effector PcAvh87, which is pivotal for the full virulence of Phytophthora cinnamomi. Gene expression analysis indicates that PcAvh87 expression is significantly upregulated during the initial infection stages, interacting with the immune responses triggered by the elicitin protein INF1 and pro-apoptotic protein BAX. Utilizing PEG/CaCl2-mediated protoplast transformation and CRISPR/Cas9-mediated gene editing, we generated PcAvh87 knockout mutants, which demonstrated compromised hyphal growth, sporangium development, and zoospore release, along with a marked reduction in pathogenicity. This underscores PcAvh87's crucial role as a virulence determinant. Notably, PcAvh87, conserved across the Phytophthora genus, was found to modulate the activity of plant immune protein 113, thereby attenuating plant immune responses. This implies that the PcAvh87-mediated regulatory mechanism could be a common strategy in Phytophthora species to manipulate plant immunity. Our findings highlight the multifaceted roles of PcAvh87 in promoting P. cinnamomi infection, including its involvement in sporangia production, mycelial growth, and the targeting of plant immune proteins to enhance pathogen virulence.

3.
J Sci Food Agric ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940359

ABSTRACT

BACKGROUND: The increasing demand for sustainable alternatives to traditional protein sources, driven by population growth, underscores the importance of protein in a healthy diet. Pecan (Carya illinoinensis (Wangenh.) K. Koch) nuts are currently underutilized as plant-based proteins but hold great potential in the food industry. However, there is insufficient information available on pecan protein, particularly its protein fractions. This study aimed to explore the physicochemical and functional properties of protein isolate and the main protein fraction glutelin extracted from pecan nuts. RESULTS: The results revealed that glutelin (820.67 ± 69.42 g kg-1) had a higher crude protein content compared to the protein isolate (618.43 ± 27.35 g kg-1), while both proteins exhibited amino acid profiles sufficient for adult requirements. The isoelectric points of protein isolate and glutelin were determined to be pH 4.0 and pH 5.0, respectively. The denaturation temperature of the protein isolate (90.23 °C) was higher than that of glutelin (87.43 °C), indicating a more organized and stable conformation. This is further supported by the fact that the protein isolate had a more stable main secondary structure than glutelin. Both proteins demonstrated improved solubility, emulsifying, and foaming properties at pH levels deviating from their isoelectric points in U-shaped curves. Compared to the protein isolate, glutelin displayed superior water and oil absorption capacity along with enhanced gelling ability. CONCLUSION: The protein isolate and glutelin from pecan nuts exhibited improved stability and competitive functional properties, respectively. The appropriate utilization of these two proteins will support their potential as natural ingredients in various food systems. © 2024 Society of Chemical Industry.

4.
Gastrointest Endosc ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692516

ABSTRACT

BACKGROUND AND AIMS: Lymph node metastasis significantly affects the prognosis of early gastric cancer patients. EUS plays a crucial role in the preoperative assessment of early gastric cancer. This study evaluated the efficacy of EUS in identifying lymph node metastasis in early gastric cancer patients and developed a risk score model to aid in choosing the best treatment options. METHODS: We retrospectively analyzed the effectiveness of EUS for detecting lymph node metastasis in early gastric cancer patients. A risk score model for predicting lymph node metastasis preoperatively was created using independent risk factors identified through binary logistic regression analysis and subsequently validated. Receiver operating characteristic curves were generated for both the development and validation cohorts. RESULTS: The overall accuracy of EUS in identifying lymph node metastasis was 85.3%, although its sensitivity (29.2%) and positive predictive value (38.7%) were relatively low. Patients were categorized based on preoperative risk factors for lymph node metastasis, including tumor size of ≥20 mm, lymph nodes of ≥10 mm, body mass index of ≥24 kg/m2, and lymph node metastasis on CT scans. A 7-point risk score model was developed to assess the likelihood of lymph node metastasis. The areas under the receiver operating characteristic curve for the development and validation sets were 0.842 and 0.837, respectively, with sensitivities of 64% and 79%, respectively. CONCLUSIONS: We developed a practical risk score model based on preoperative factors to help EUS predict lymph node metastasis in early gastric cancer patients, guiding the selection of optimal treatment approaches for these patients.

5.
Plants (Basel) ; 13(9)2024 May 04.
Article in English | MEDLINE | ID: mdl-38732487

ABSTRACT

Establishing plant regeneration systems and efficient genetic transformation techniques plays a crucial role in plant functional genomics research and the development of new crop varieties. The inefficient methods of transformation and regeneration of recalcitrant species and the genetic dependence of the transformation process remain major obstacles. With the advancement of plant meristematic tissues and somatic embryogenesis research, several key regulatory genes, collectively known as developmental regulators, have been identified. In the field of plant genetic transformation, the application of developmental regulators has recently garnered significant interest. These regulators play important roles in plant growth and development, and when applied in plant genetic transformation, they can effectively enhance the induction and regeneration capabilities of plant meristematic tissues, thus providing important opportunities for improving genetic transformation efficiency. This review focuses on the introduction of several commonly used developmental regulators. By gaining an in-depth understanding of and applying these developmental regulators, it is possible to further enhance the efficiency and success rate of plant genetic transformation, providing strong support for plant breeding and genetic engineering research.

6.
J Environ Manage ; 357: 120841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581898

ABSTRACT

Quercus gilva, an evergreen tree species in Quercus section Cyclobalanopsis, is an ecologically and economically valuable species in subtropical regions of East Asia. Predicting the impact of climate change on potential distribution of Q. gilva can provide a scientific basis for the conservation and utilization of its genetic resources, as well as for afforestation. In this study, 74 distribution records of Q. gilva and nine climate variables were obtained after data collection and processing. Current climate data downloaded from WorldClim and future climate data predicted by four future climate scenarios (2040s SSP1-2.6, 2040s SSP5-8.5, 2060s SSP1-2.6, and 2060s SSP5-8.5) mainly based on greenhouse gases emissions of distribution sites were used in MaxEnt model with optimized parameters to predict distribution dynamics of Q. gilva and its response to climate change. The results showed that the predicted current distribution was consistent with natural distribution of Q. gilva, which was mainly located in Hunan, Jiangxi, Zhejiang, Fujian, Guizhou, and Taiwan provinces of China, as well as Japan and Jeju Island of South Korea. Under current climate conditions, precipitation factors played a more significant role than temperature factors on distribution of Q. gilva, and precipitation of driest quarter (BIO17) is the most important restriction factor for its current distribution (contribution rate of 57.35%). Under future climate conditions, mean temperature of driest quarter (BIO9) was the essential climate factor affecting future change in potential distribution of Q. gilva. As the degree of climatic anomaly increased in the future, the total area of predicted distribution of Q. gilva showed a shrinking trend (decreased by 12.24%-45.21%) and Q. gilva would migrate to high altitudes and latitudes. The research results illustrated potential distribution range and suitable climate conditions of Q. gilva, which can provide essential theoretical references for the conservation, development, and utilization of Q. gilva and other related species.


Subject(s)
Greenhouse Gases , Quercus , Climate Change , China , Taiwan , Ecosystem
7.
Proc Natl Acad Sci U S A ; 121(13): e2318475121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466879

ABSTRACT

Deforestation poses a global threat to biodiversity and its capacity to deliver ecosystem services. Yet, the impacts of deforestation on soil biodiversity and its associated ecosystem services remain virtually unknown. We generated a global dataset including 696 paired-site observations to investigate how native forest conversion to other land uses affects soil properties, biodiversity, and functions associated with the delivery of multiple ecosystem services. The conversion of native forests to plantations, grasslands, and croplands resulted in higher bacterial diversity and more homogeneous fungal communities dominated by pathogens and with a lower abundance of symbionts. Such conversions also resulted in significant reductions in carbon storage, nutrient cycling, and soil functional rates related to organic matter decomposition. Responses of the microbial community to deforestation, including bacterial and fungal diversity and fungal guilds, were predominantly regulated by changes in soil pH and total phosphorus. Moreover, we found that soil fungal diversity and functioning in warmer and wetter native forests is especially vulnerable to deforestation. Our work highlights that the loss of native forests to managed ecosystems poses a major global threat to the biodiversity and functioning of soils and their capacity to deliver ecosystem services.


Subject(s)
Ecosystem , Microbiota , Soil/chemistry , Conservation of Natural Resources , Biodiversity , Forests , Bacteria , Soil Microbiology
8.
Plant Mol Biol ; 114(2): 29, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502380

ABSTRACT

Advances in carbohydrate metabolism prompted its essential role in defense priming and sweet immunity during plant-pathogen interactions. Nevertheless, upstream responding enzymes in the sucrose metabolic pathway and associated carbohydrate derivatives underlying fungal pathogen challenges remain to be deciphered in Populus, a model tree species. In silico deduction of genomic features, including phylogenies, exon/intron distributions, cis-regulatory elements, and chromosomal localization, identified 59 enzyme genes (11 families) in the Populus genome. Spatiotemporal expression of the transcriptome and the quantitative real-time PCR revealed a minuscule number of isogenes that were predominantly expressed in roots. Upon the pathogenic Fusarium solani (Fs) exposure, dynamic changes in the transcriptomics atlas and experimental evaluation verified Susy (PtSusy2 and 3), CWI (PtCWI3), VI (PtVI2), HK (PtHK6), FK (PtFK6), and UGPase (PtUGP2) families, displaying promotions in their expressions at 48 and 72 h of post-inoculation (hpi). Using the gas chromatography-mass spectrometry (GC-MS)-based non-targeted metabolomics combined with a high-performance ion chromatography system (HPICS), approximately 307 metabolites (13 categories) were annotated that led to the quantification of 46 carbohydrates, showing marked changes between three compared groups. By contrast, some sugars (e.g., sorbitol, L-arabitol, trehalose, and galacturonic acid) exhibited a higher accumulation at 72 hpi than 0 hpi, while levels of α-lactose and glucose decreased, facilitating them as potential signaling molecules. The systematic overview of multi-omics approaches to dissect the effects of Fs infection provides theoretical cues for understanding defense immunity depending on fine-tuned Suc metabolic gene clusters and synergistically linked carbohydrate pools in trees.


Subject(s)
Fusarium , Populus , Humans , Sucrose/metabolism , Multiomics , Populus/genetics , Populus/metabolism , Carbohydrates , Hexoses/metabolism
9.
Nutrients ; 16(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474822

ABSTRACT

Alcoholic liver disease (ALD) is primarily caused by long-term excessive alcohol consumption. Cyanidin-3-O-glucoside (C3G) is a widely occurring natural anthocyanin with multiple biological activities. This study aims to investigate the effects of C3G isolated from black rice on ALD and explore the potential mechanism. C57BL/6J mice (male) were fed with standard diet (CON) and Lieber-DeCarli liquid-fed (Eth) or supplemented with a 100 mg/kg/d C3G Diet (Eth-C3G), respectively. Our results showed that C3G could effectively ameliorate the pathological structure and liver function, and also inhibited the accumulation of liver lipids. C3G supplementation could partially alleviate the injury of intestinal barrier in the alcohol-induced mice. C3G supplementation could increase the abundance of Norank_f_Muribaculaceae, meanwhile, the abundances of Bacteroides, Blautia, Collinsella, Escherichia-Shigella, Enterococcus, Prevotella, [Ruminococcus]_gnavus_group, Methylobacterium-Methylorubrum, Romboutsia, Streptococcus, Bilophila, were decreased. Spearman's correlation analysis showed that 12 distinct genera were correlated with blood lipid levels. Non-targeted metabolic analyses of cecal contents showed that C3G supplementation could affect the composition of intestinal metabolites, particularly bile acids. In conclusion, C3G can attenuate alcohol-induced liver injury by modulating the gut microbiota and metabolites, suggesting its potential as a functional food ingredient against alcoholic liver disease.


Subject(s)
Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Mice , Male , Animals , Anthocyanins/pharmacology , Mice, Inbred C57BL , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Glucosides/pharmacology
10.
Food Sci Biotechnol ; 33(1): 145-157, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186612

ABSTRACT

Yellow horn (Xanthoceras sorbifolia Bunge) contained abundant linoleic acid (LA), accounting for about 44% of its lipid. Here, LA was enriched by low temperature crystallization followed by urea complexation, and the optimal enrichment conditions were optimized with response surface methods (3:1 ratio of EtOH/FFA, crystallization at - 25 °C for 24.5 h; 2:1 ratio of urea/FFA1, 6.6:1 ratio of EtOH/urea, crystallization at - 10 °C for 22.4 h). Under these conditions, the final LA content and recovery were 97.10% and 62.09%, respectively. In vitro hypoglycemic studies suggested that the LA extract with stronger inhibition on α-glucosidase and lower one on α-amylase than acarbose exhibited a positive control for carbohydrate digestion with lower adverse effects. The enzyme kinetics and Lineweaver-Burk plots analyses revealed a reversible competitive inhibition on α-amylase and α-glucosidase. The findings of this research provided insights for the development of the LA extract as the functional component of health food. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01327-9.

11.
Nat Commun ; 14(1): 8126, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38065941

ABSTRACT

It is widely known that some soils have strong levels of disease suppression and prevent the establishment of pathogens in the rhizosphere of plants. However, what soils are better suppressing disease, and how management can help us to boost disease suppression remain unclear. Here, we used field, greenhouse and laboratory experiments to investigate the effect of management (monocropping and rotation) on the capacity of rhizosphere microbiomes in suppressing peanut root rot disease. Compared with crop rotations, monocropping resulted in microbial assemblies that were less effective in suppressing root rot diseases. Further, the depletion of key rhizosphere taxa in monocropping, which were at a disadvantage in the competition for limited exudates resources, reduced capacity to protect plants against pathogen invasion. However, the supplementation of depleted strains restored rhizosphere resistance to pathogen. Taken together, our findings highlight the role of native soil microbes in fighting disease and supporting plant health, and indicate the potential of using microbial inocula to regenerate the natural capacity of soil to fight disease.


Subject(s)
Fabaceae , Microbiota , Soil , Arachis , Rhizosphere , Crop Production , Soil Microbiology , Plant Roots
12.
Plants (Basel) ; 12(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38140447

ABSTRACT

Breeding early maturing cultivars is one of the most important objectives in pear breeding. Very early maturing pears provide an excellent parental material for crossing, but the immature embryo and low seed germination of their hybrid progenies often limit the selection and breeding of new early maturing pear cultivars. In this study, we choose a very early maturing pear cultivar 'Pearl Pear' as the study object and investigate the effects of cold stratification, the culture medium, and the seed coat on the germination and growth of early maturing pear seeds. Our results show that cold stratification (4 °C) treatment could significantly improve the germination rates of early maturing pear seeds. A total of 100 days of cold-temperature treatment in 4 °C and in vitro germination on White medium increased the germination rate to 84.54%. We also observed that seed coat removal improved the germination of early maturing pear seeds, with middle seed coat removal representing the optimal method, with a high germination rate and low contamination. The results of our study led to the establishment of an improved protocol for the germination of early maturing pear, which will greatly facilitate the breeding of new very early maturing pear cultivars.

13.
BMC Genomics ; 24(1): 633, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872493

ABSTRACT

Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.


Subject(s)
Nitrates , Plant Proteins , Nitrates/pharmacology , Nitrates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ginkgo biloba/genetics , Anion Transport Proteins/genetics , Anion Transport Proteins/chemistry , Anion Transport Proteins/metabolism , Nitrate Transporters , Nitrogen/metabolism , Indoleacetic Acids , Gene Expression Regulation, Plant , Phylogeny
14.
Plants (Basel) ; 12(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37896026

ABSTRACT

Ginkgo biloba L. is a tree species of significant economic and ecological importance. Prior studies of the Ginkgo biloba seed coat have predominantly focused on the sarcotesta and sclerotesta, with less attention paid to the endotesta. In this study, the development and formation of Ginkgo endotesta were examined using light microscopy and transmission electron microscopy. The structural properties of the mature endotesta were analyzed using micro-CT imaging and scanning electron microscopy. The results indicate that the endotesta possess a membranous structure primarily originating from the inner bead peridium, a segment of bead core tissue, and the macrospore membrane. The endotesta from the middle constriction line to the chalazal end comprises a single layer with a greyish-white papery structure. In contrast, the endotesta was divided into two inner and two outer layers, from the middle constriction line to the micropylar end. The outer endosperm adheres closely to the sclerotesta, while the inner endosperm adheres to the seed kernel. The surface of the endotesta was irregularly raised, with thicker wax at the chalazal end, whereas the micropylar end demonstrated similar characteristics with thinner wax and tumor layers. The endotesta contained 17 amino acids, 18 fatty acids, 10 trace elements, and 7 vitamins. Overall, its nutritional value was relatively well balanced.

15.
Molecules ; 28(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687239

ABSTRACT

Bilobalide exhibits numerous beneficial bioactivities, including neuroprotective, anti-inflammatory, and antioxidant activity. Our previous study demonstrated that bilobalide inhibits adipogenesis and promotes lipolysis. The dose-dependent cytotoxicity was found to be specific to the mature adipocytes only, indicating the potential for regulating apoptosis in them. Herein, we aimed to investigate the apoptotic effects of bilobalide on 3T3-L1 mature adipocytes and elucidate the underlying mechanisms thereof. Flow cytometry analysis (FACS) revealed the pro-apoptotic effects of bilobalide on these cells. Bilobalide induced early apoptosis by reducing the mitochondrial membrane potential (MMP). DNA fragmentation was confirmed using TUNEL staining. Additionally, bilobalide increased the intracellular reactive oxygen species (ROS) levels and activities of Caspases 3/9. Pre-treatment with NAC (an ROS scavenger) confirmed the role of ROS in inducing apoptosis. Moreover, bilobalide up- and down-regulated the expression of Bax and Bcl-2, respectively, at the mRNA and protein expression levels; upregulated the Bax/Bcl-2 ratio; triggered the release of cytochrome c from the mitochondria; and increased the protein expression of cleaved Caspase 3, cleaved Caspase 9, and PARP cleavage. These results support the conclusion that bilobalide induces apoptosis in mature 3T3-L1 adipocytes through the ROS-mediated mitochondrial pathway, and offers potential novel treatment for obesity.


Subject(s)
Bilobalides , Mice , Animals , Reactive Oxygen Species , 3T3-L1 Cells , bcl-2-Associated X Protein , Apoptosis , Mitochondria , Adipocytes
16.
Plant Phenomics ; 5: 0092, 2023.
Article in English | MEDLINE | ID: mdl-37745912

ABSTRACT

With the concept of sustainable management of plantations, individual trees with excellent characteristics in plantations have received attention from breeders. To improve and maintain long-term productivity, accurate and high-throughput access to phenotypic characteristics is essential when establishing breeding strategies. Meanwhile, genetic diversity is also an important issue that must be considered, especially for plantations without seed source information. This study was carried out in a ginkgo timber plantation. We used simple sequence repeat (SSR) markers for genetic background analysis and high-density terrestrial laser scanning for growth structural characteristic extraction, aiming to provide a possibility of applying remote sensing approaches for forest breeding. First, we analyzed the genetic diversity and population structure, and grouped individual trees according to the genetic distance. Then, the growth structural characteristics (height, diameter at breast height, crown width, crown area, crown volume, height to living crown, trunk volume, biomass of all components) were extracted. Finally, individual trees in each group were comprehensively evaluated and the best-performing ones were selected. Results illustrate that terrestrial laser scanning (TLS) point cloud data can provide nondestructive estimates of the growth structural characteristics at fine scale. From the ginkgo plantation containing high genetic diversity (average polymorphism information content index was 0.719) and high variation in growth structural characteristics (coefficient of variation ranged from 21.822% to 85.477%), 11 excellent individual trees with superior growth were determined. Our study guides the scientific management of plantations and also provides a potential for applying remote sensing technologies to accelerate forest breeding.

18.
Foods ; 12(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37628082

ABSTRACT

Due to today's fast-paced lifestyle, most people are in a state of sub-health and face "unexplained fatigue", which can seriously affect their health, work efficiency, and quality of life. Fatigue is also a common symptom of several serious diseases such as Parkinson's, Alzheimer's, cancer, etc. However, the contributing mechanisms are not clear, and there are currently no official recommendations for the treatment of fatigue. Some dietary polysaccharides are often used as health care supplements; these have been reported to have specific anti-fatigue effects, with minor side effects and rich pharmacological activities. Dietary polysaccharides can be activated during food processing or during gastrointestinal transit, exerting unique effects. This review aims to comprehensively summarize and evaluate the latest advances in the biological processes of exercise-induced fatigue, to understand dietary polysaccharides and their possible molecular mechanisms in alleviating exercise-induced fatigue, and to systematically elaborate the roles of gut microbiota and the gut-muscle axis in this process. From the perspective of the gut-muscle axis, investigating the relationship between polysaccharides and fatigue will enhance our understanding of fatigue and may lead to a significant breakthrough regarding the molecular mechanism of fatigue. This paper will provide new perspectives for further research into the use of polysaccharides in food science and food nutrition, which could help develop potential anti-fatigue agents and open up novel therapies for sub-health conditions.

19.
BMC Cancer ; 23(1): 681, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37474893

ABSTRACT

INTRODUCTION: Endoscopic ultrasound (EUS) may play a role in evaluating treatment response after definitive chemoradiation therapy (dCRT) for esophageal squamous cell carcinoma (ESCC). This study explored the prognostic markers of EUS with biopsies and developed two nomograms for survival prediction. METHODS: A total of 821 patients newly diagnosed with ESCC between January 2015 and December 2019 were reviewed. We investigated the prognostic value of the changes in tumor imaging characteristics and histopathological markers by an interim response evaluation, including presence of stenosis, ulceration, tumor length, tumor thickness, lumen involvement, and tumor remission. Independent prognostic factors of progression-free survival (PFS) and overall survival (OS) were determined using Cox regression analysis and further selected to build two nomogram models for survival prediction. The receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were used to respectively assess its discriminatory capacity, predictive accuracy, and clinical usefulness. RESULTS: A total of 155 patients were enrolled in this study and divided into the training (109 cases) and testing (46 cases) cohorts. Tumor length, residual tumor thickness, reduction in tumor thickness, lumen involvement, and excellent remission (ER) of spatial luminal involvement in ESCC (ER/SLI) differed significantly between responders and non-responders. For patients undergoing dCRT, tumor stage (P = 0.001, 0.002), tumor length (P = 0.013, 0.008), > 0.36 reduction in tumor thickness (P = 0.004, 0.004) and ER/SLI (P = 0.041, 0.031) were independent prognostic markers for both PFS and OS. Time-dependent ROC curves, calibration curves, and DCA indicated that the predicted survival rates of our two established nomogram models were highly accurate. CONCLUSION: Our nomogram showed high accuracy in predicting PFS and OS for ESCC after dCRT. External validation and complementation of other biomarkers are needed in further studies.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Squamous Cell Carcinoma/therapy , Prognosis , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/therapy , Nomograms , Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL
...