Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 307(Pt 4): 136094, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995200

ABSTRACT

Polystyrene (PS) is selected as a representative nanoplastic and persistent pollutant for its difficult degradation and wide application. The environmental risk assessment of PS is obstructed by the toxic dye-based fluorescent PS, which false positives could be induced by the leakage of dye. For high biocompatibility, low toxicity, hydrophilicity, good water dispersibility, strong fluorescent stability, graphene oxide quantum dots (o-CQDs) are selected and embedded into PS microspheres, i.e., o-CQDs@PS, by microemulsion polymerization and denoted as CPS. Meanwhile, the sizes of CPS, e.g., 100, 150, and 200 nm, could be controlled by optimizing the type and number of water-soluble initiators. The anti-interference, low toxicity, and in vivo fluorescent tracing of CPS are proven by the coexistence of metals (including Fe2+, Fe3+, K+, Ba2+, Al3+, Zn2+, Mg2+, Ca2+, and Na+) on the fluorescence intensity of CPS, the growth of Chlorella pyrenoidosa and Artemia cysts as aquatic phytoplankton and zooplankton cultured with CPS, and the transfer of CPS from water into brine shrimp. In the concentration range of 0.1-100 mg/L, CPS can be quantitatively determined, which is suitable for coastal water and wastewater treatment plants. Therefore, CPS with standard size is suitable as reference material of PS.


Subject(s)
Chlorella , Environmental Pollutants , Nanospheres , Quantum Dots , Animals , Artemia/metabolism , Environmental Pollutants/metabolism , Graphite , Microplastics , Polystyrenes/toxicity , Quantum Dots/toxicity , Water/metabolism
2.
Food Chem ; 373(Pt B): 131593, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-34838401

ABSTRACT

Nitrite is one of the most common carcinogens in daily food. Its simple, rapid, inexpensive, and in-field measurement is important for food safety, based on the requirements of the standard from Codex Alimentarius Commission and China. Using polyacrylonitrile (PAN) and thin layer silica gel (SG), p-aminophenylcyclic acid (SA) and naphthalene ethylenediamine hydrochloride (NEH), as carriers and chromogenic agents, respectively, PAN-NSS as nitrite color sensor is proposed. After fixing and protecting of SA and NEH with layer-upon-layer PAN, the validity period of the test paper can be prolonged from 7 days to more than 30 days. The reproducibility of PAN-NSS preparation is ensured by electrospinning. Combined with PAN-NSS, deep convolutional neural network (DCNN) and APP as a visual monitoring platform, which has the functions of rapid sampling, data processing and transmission, intuitive feedback, etc., and provides a fully integrated detection system for field detection.


Subject(s)
Colorimetry , Nitrites , China , Neural Networks, Computer , Reproducibility of Results
3.
J Hazard Mater ; 416: 126146, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492932

ABSTRACT

As worldwide edible fungi, Lentinula edodes and Agaricus bisporus accumulate both essential and harmful metals. Metal bioavailability is important for metal benefit-risk assessment. A full functional model of digestive tracts (including digestion, metabolism, and absorption) is established. Under the digestive tract functions, the bioaccessible and bioavailable metals are released from edible fungi and absorbed by intestinal tract, respectively. Based on bioavailable metal contents in the intestine, safe dosage and maximum consumption are 43.52 g/d and 248.7 g/d for Agaricus bisporu, 20.59/328.9 g/d (for males/ female) and 132.9 g/d for Lentinus edodes; V, Co, Ni, Cu, Zn, Se, Cr, Cd and Pb in Agaricus bisporus and Lentinula edodes are absorbed mainly in the large intestine; Fe is mainly absorbed in small intestine; edible fungi species-specificity in metal bioavailability is observed for As and Mn, which are mainly absorbed by small and large intestine for Agaricus bisporus and Lentinus edodes, respectively; and then metal toxicity on small and large intestine is disclosed. Metal benefit-risk is assessed by the content of monolayer liposome-extracted metal in the chyme from small and large intestine, which is controlled by the gastrointestinal functions, metal and edible fungi species.


Subject(s)
Agaricus , Metals, Heavy , Biological Availability , Biomimetics , Digestion , Environmental Monitoring , Female , Gastrointestinal Tract/metabolism , Humans , Metals, Heavy/analysis , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL