Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Radiol ; 32(8): 5446-5457, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35286409

ABSTRACT

OBJECTIVE: Perivascular spaces (PVS), components of the glymphatic system in the brain, have been known to be important conduits for clearing metabolic waste, and this process mainly increases during sleep. Sleep disruption might result in PVS dysfunction and cognitive impairment. In this study, we aim to explore whether MRI-visible enlarged perivascular spaces (EPVS) could be imaging markers to predict cognitive impairment in chronic insomnia patients. METHOD: We obtained data from 156 patients with chronic insomnia and 79 age-matched healthy individuals. Using T2-weighted MRI images, visible EPVS in various brain regions were measured and analyzed. The associations between EPVS numbers and cerebrospinal fluid (CSF) ß-amyloid 42 (Aß42), total tau (t-tau), and phosphorylated tau (p-tau) level in chronic insomnia patients were evaluated. RESULT: Our results showed that MRI-visible EPVS in the frontal cortex, centrum semiovale, basal ganglia, and hippocampus of chronic insomnia patients with impaired cognition (ICG) significantly increased than that in normal cognition (NCG) patients. The increased MRI-visible EPVS in the frontal cortex, centrum semiovale, and basal ganglia were also associated with the increased CSF Aß42, t-tau, and p-tau level in ICG patients. MRI-visible EPVS in the basal ganglia and centrum semiovale had high sensitivity and specificity in distinguishing ICG chronic insomnia patients from those with NCG. CONCLUSION: Our study indicated that MRI-visible EPVS in the basal ganglia and centrum semiovale might be valuable imaging markers to predict cognitive impairment in chronic insomnia patients. It will be meaningful to discern those cognitive decline patients in preclinical stage and take some measures to prevent disease progression. KEY POINTS: • Increased MRI-visible EPVS were associated with the increased CSF Aß42, t-tau, and p-tau level in older chronic insomnia patients with impaired cognition.


Subject(s)
Cognitive Dysfunction , Sleep Initiation and Maintenance Disorders , Aged , Basal Ganglia , Biomarkers , Cognition , Cognitive Dysfunction/complications , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging , Sleep Initiation and Maintenance Disorders/complications , Sleep Initiation and Maintenance Disorders/diagnostic imaging
2.
Nat Med ; 27(3): 411-418, 2021 03.
Article in English | MEDLINE | ID: mdl-33462448

ABSTRACT

Animal studies implicate meningeal lymphatic dysfunction in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (PD). However, there is no direct evidence in humans to support this role1-5. In this study, we used dynamic contrast-enhanced magnetic resonance imaging to assess meningeal lymphatic flow in cognitively normal controls and patients with idiopathic PD (iPD) or atypical Parkinsonian (AP) disorders. We found that patients with iPD exhibited significantly reduced flow through the meningeal lymphatic vessels (mLVs) along the superior sagittal sinus and sigmoid sinus, as well as a notable delay in deep cervical lymph node perfusion, compared to patients with AP. There was no significant difference in the size (cross-sectional area) of mLVs in patients with iPD or AP versus controls. In mice injected with α-synuclein (α-syn) preformed fibrils, we showed that the emergence of α-syn pathology was followed by delayed meningeal lymphatic drainage, loss of tight junctions among meningeal lymphatic endothelial cells and increased inflammation of the meninges. Finally, blocking flow through the mLVs in mice treated with α-syn preformed fibrils increased α-syn pathology and exacerbated motor and memory deficits. These results suggest that meningeal lymphatic drainage dysfunction aggravates α-syn pathology and contributes to the progression of PD.


Subject(s)
Drainage , Lymphatic Vessels/physiopathology , Meninges/physiopathology , Parkinson Disease/physiopathology , Disease Progression , Humans , Magnetic Resonance Imaging , Meninges/diagnostic imaging , Parkinson Disease/metabolism , Parkinson Disease/therapy , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...