Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.074
Filter
1.
Pharmacotherapy ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949433

ABSTRACT

Platelet glycoprotein (GP) IIb/IIIa antagonists have been employed in selective patients after endovascular therapy (EVT) for acute ischemic stroke (AIS), yet application in patients without EVT is debated. This meta-analysis of randomized controlled studies on AIS patients without EVT assessed the effectiveness and safety of platelet GP IIb/IIIa antagonists compared with traditional antiplatelet or thrombolysis therapy. Articles were retrieved from databases, including PubMed, Web of Science, EMBASE, and Cochrane. The risk of bias and certainty level of evidence were assessed. Fifteen studies were included. GP IIb/IIIa antagonists increased the proportion of patients with modified Rankin Scale (mRS) 0-1 (odd ratio [OR] 1.37, 95% confidence interval [CI] 1.04-1.81, p = 0.03), mRS 0-2 (OR 1.27, 95% CI 1.12-1.46, p = 0.0004), and Barthel Index (BI) 95-100 (OR 1.25, p = 0.005); decreased the proportion of stroke progression within 5 days (OR 0.66, p = 0.006); and lowered the mean mRS score at 90 days (mean difference [MD] -0.43, p = 0.002) and the National Institute of Health stroke scale score at 7 days (MD -1.64, p < 0.00001) compared with conventional treatment. Proportions of stroke recurrence within 90 days (OR 1.20, p = 0.60), any intracranial hemorrhage (aICH) (OR 1.20, p = 0.12), symptomatic intracranial hemorrhage (sICH) (OR 0.91, p = 0.88), and death (OR 0.87, p = 0.25) had no statistical difference between both groups. This meta-analysis finds that compared with traditional antiplatelet or thrombolysis therapy, GP IIb/IIIa antagonists administered within 24-96 h of ischemic stroke onset significantly improve functional prognosis of patients with AIS not receiving EVT, as indicated by mRS and BI at 90 days, and do not increase the incidence of aICH, sICH, and death.

2.
Front Immunol ; 15: 1426064, 2024.
Article in English | MEDLINE | ID: mdl-38953031

ABSTRACT

Background: Unbalanced inflammatory response is a critical feature of sepsis, a life-threatening condition with significant global health burdens. Immune dysfunction, particularly that involving different immune cells in peripheral blood, plays a crucial pathophysiological role and shows early warning signs in sepsis. The objective is to explore the relationship between sepsis and immune subpopulations in peripheral blood, and to identify patients with a higher risk of 28-day mortality based on immunological subtypes with machine-learning (ML) model. Methods: Patients were enrolled according to the sepsis-3 criteria in this retrospective observational study, along with age- and sex-matched healthy controls (HCs). Data on clinical characteristics, laboratory tests, and lymphocyte immunophenotyping were collected. XGBoost and k-means clustering as ML approaches, were employed to analyze the immune profiles and stratify septic patients based on their immunological subtypes. Cox regression survival analysis was used to identify potential biomarkers and to assess their association with 28-day mortality. The accuracy of biomarkers for mortality was determined by the area under the receiver operating characteristic (ROC) curve (AUC) analysis. Results: The study enrolled 100 septic patients and 89 HCs, revealing distinct lymphocyte profiles between the two groups. The XGBoost model discriminated sepsis from HCs with an area under the receiver operating characteristic curve of 1.0 and 0.99 in the training and testing set, respectively. Within the model, the top three highest important contributions were the percentage of CD38+CD8+T cells, PD-1+NK cells, HLA-DR+CD8+T cells. Two clusters of peripheral immunophenotyping of septic patients by k-means clustering were conducted. Cluster 1 featured higher proportions of PD1+ NK cells, while cluster 2 featured higher proportions of naïve CD4+T cells. Furthermore, the level of PD-1+NK cells was significantly higher in the non-survivors than the survivors (15.1% vs 8.6%, P<0.01). Moreover, the levels of PD1+ NK cells combined with SOFA score showed good performance in predicting the 28-day mortality in sepsis (AUC=0.91,95%CI 0.82-0.99), which is superior to PD1+ NK cells only(AUC=0.69, sensitivity 0.74, specificity 0.64, cut-off value of 11.25%). In the multivariate Cox regression, high expression of PD1+ NK cells proportion was related to 28-day mortality (aHR=1.34, 95%CI 1.19 to 1.50; P<0.001). Conclusion: The study provides novel insights into the association between PD1+NK cell profiles and prognosis of sepsis. Peripheral immunophenotyping could potentially stratify the septic patients and identify those with a high risk of 28-day mortality.


Subject(s)
Killer Cells, Natural , Programmed Cell Death 1 Receptor , Sepsis , Humans , Sepsis/mortality , Sepsis/immunology , Male , Female , Programmed Cell Death 1 Receptor/metabolism , Middle Aged , Aged , Killer Cells, Natural/immunology , Retrospective Studies , Biomarkers , Prognosis , Immunophenotyping , ROC Curve , Machine Learning
3.
Aging (Albany NY) ; 162024 Jun 29.
Article in English | MEDLINE | ID: mdl-38954761

ABSTRACT

Immunosenescence is a process of immune dysfunction that occurs along with aging. Many studies have focused on the changes of different lymphocyte subsets in diseases and immune aging. However, the fluctuation in the number and phenotype of lymphocyte subset caused by aging have not been comprehensively analyzed, especially the effects of new indicators such as PD-1 and Ki67 in peripheral blood have been rarely reported. We further investigated the humoral and cellular immune parameters of 150 healthy donors over 18 years old. Age was associated with decreased CD4+CD45RA+CD62L+ T cells, decreased CD4+CD45RA+CD31+ T cells, and increased memory CD4+ or CD8+ T cells, dominated by male CD8+ T cells. The loss of CD28 expression on T cells and the transverse trend of activated CD38 and HLA-DR were also related to the increased age. In addition, CD8+ T cells in men were more prominent in activation indicators, and the difference between the old and young groups was obvious. CD4+CD25+CD127- T cells percentage tended to decrease with age and did not differ significantly between gender. Interestingly, we found that age was positively associated with PD-1+ T cells and showed significant age-related variability in men. Similarly, the percentage of CD8+ki-67+ also showed an increasing trend, with significant differences between the young group and other elderly groups in males. Our findings can provide immunological clues for future aging research, offering new insights for clinical monitoring and prevention of certain diseases.

4.
Phytomedicine ; 132: 155825, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38968790

ABSTRACT

BACKGROUND: Chemotherapeutic agents including cisplatin, gemcitabine, and pemetrexed, significantly enhance the efficacy of immune checkpoint inhibitors (ICIs) in non-small cell lung cancer (NSCLC) by increasing PD-L1 expression and potentiating T cell cytotoxicity. However, the low response rate and adverse effects limit the application of chemotherapy/ICI combinations in patients. METHODS: We screened for medicinal herbs that could perturb PD-L1 expression and enhance T cell cytotoxicity in the presence of anti-PD-L1 antibody, and investigated the underlying mechanisms. RESULTS: We found that the aqueous extracts of Centipeda minima (CM) significantly enhanced the cancer cell-killing activity and granzyme B expression level of CD8+ T cells, in the presence of anti-PD-L1 antibody. Both CM and its active component 6-O-angeloylplenolin (6-OAP) upregulated PD-L1 expression by suppressing GSK-3ß-ß-TRCP-mediated ubiquitination and degradation. CM and 6-OAP significantly enhanced ICI-induced reduction of tumor burden and prolongation of overall survival of mice bearing NSCLC cells, accompanied by upregulation of PD-L1 and increase of CD8+ T cell infiltration. CM also exhibited anti-NSCLC activity in cells and in a patient-derived xenograft mouse model. CONCLUSIONS: These data demonstrated that the induced expression of PD-L1 and enhancement of CD8+ T cell cytotoxicity underlay the beneficial effects of 6-OAP-rich CM in NSCLCs, providing a clinically available and safe medicinal herb for combined use with ICIs to treat this deadly disease.

5.
Plant Physiol Biochem ; 214: 108879, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38964088

ABSTRACT

Cell cycle progression, autophagic cell death during appressorium development, and ROS degradation at the infection site are important for the development of rice blast disease. However, the association of cell cycle, autophagy and ROS detoxification remains largely unknown in M. oryzae. Here, we identify the dual-specificity kinase MoLKH1, which serves as an important cell cycle regulator required for appressorium formation by regulating cytokinesis and cytoskeleton in M. oryzae. MoLKH1 is transcriptionally activated by H2O2 and required for H2O2-induced autophagic cell death and suppression of ROS-activated plant defense during plant invasion of M. oryzae. In addition, the Molkh1 mutant also showed several phenotypic defects, including delayed growth, abnormal conidiation, damaged cell wall integrity, impaired glycogen and lipid transport, reduced secretion of extracellular enzymes and effectors, and attenuated virulence of M. oryzae. Nuclear localization of MoLKH1 requires the nuclear localization sequence, Lammer motif, as well as the kinase active site and ATP-binding site in this protein. Site-directed mutagenesis showed that each of them plays crucial roles in fungal growth and pathogenicity of M. oryzae. In conclusion, our results demonstrate that MoLKH1-mediated cell cycle, autophagy, and suppression of plant immunity play crucial roles in development and pathogenicity of M. oryzae.

6.
Food Chem ; 458: 140285, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38970956

ABSTRACT

Sprouting can enhance the bioavailability and stimulate the production of health-promoting compounds. This research explored the potential health benefits of wheat sprouting, focusing on underexplored areas in existing literature such as alterations in phenylalanine ammonia-lyase (PAL) activity and glutathione levels during wheat sprouting. Furthermore, special attention was directed toward asparagine (Asn), the main precursor of acrylamide formation, as regulatory agencies are actively seeking to impose limitations on the presence of acrylamide in baked products. The results demonstrate elevated levels of PAL (4.5-fold at 48 h of sprouting), antioxidants, and total phenolics (1.32 mg gallic acid equivalent/g dry matter at 72 h of sprouting), coupled with a reduction in Asn (i.e. 11-fold at 48 h of sprouting) and glutathione concentrations, after wheat sprouting. These findings suggest that sprouting can unlock health-promoting properties in wheat. Optimizing the sprouting process to harness these benefits, however, may have implications for the techno-functionality of wheat flour in food processing.

7.
bioRxiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38826478

ABSTRACT

Although aging significantly elevates the risk of developing neurodegenerative diseases, how age-related neuroinflammation preconditions the brain toward pathological progression is ill-understood. To comprehend the scope of type I interferon (IFN-I) activity in the aging brain, we surveyed IFN-I-responsive reporter mice and detected age-dependent signal escalation in multiple brain cell types from various regions. Selective ablation of Ifnar1 from microglia in aged mice significantly reduced overall brain IFN-I signature, dampened microglial reactivity, lessened neuronal loss, and diminished the accumulation of lipofuscin, a core hallmark of cellular aging in the brain. Overall, our study demonstrates pervasive IFN-I activity during normal mouse brain aging and reveals a pathogenic role played by microglial IFN-I signaling in perpetuating neuroinflammation, neuronal dysfunction, and molecular aggregation. These findings extend the understanding of a principal axis of age-related inflammation in the brain, and provide a rationale to modulate aberrant immune activation to mitigate neurodegenerative process at all stages.

8.
Clin Nucl Med ; 49(8): 797-798, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38914082

ABSTRACT

ABSTRACT: Various factors leading to unexpected false-positive 131 I uptake have been extensively studied in patients with differentiated thyroid carcinoma. In this case, we present a patient who underwent achalasia surgery and subsequently exhibited abnormal 131 I uptake on SPECT/CT imaging. The patient was a known case of papillary thyroid carcinoma that suggested to 131 I therapy. 131 I SPECT/CT showed linear increased activity in the distended esophagus.


Subject(s)
Esophageal Achalasia , Iodine Radioisotopes , Single Photon Emission Computed Tomography Computed Tomography , Thyroid Cancer, Papillary , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Neoplasms/diagnostic imaging , Esophageal Achalasia/diagnostic imaging , Carcinoma, Papillary/diagnostic imaging , Female , Middle Aged , Male , Tomography, X-Ray Computed
9.
Catal Sci Technol ; 14(11): 3029-3040, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38841155

ABSTRACT

This work employs ambient pressure X-ray photoelectron spectroscopy (APXPS) to delve into the atomic and electronic transformations of a core-shell Ni@NiO/NiCO3 photocatalyst - a model system for visible light active plasmonic photocatalysts used in water splitting for hydrogen production. This catalyst exhibits reversible structural and electronic changes in response to water vapor and solar simulator light. In this study, APXPS spectra were obtained under a 1 millibar water vapor pressure, employing a solar simulator with an AM 1.5 filter to measure spectral data under visible light illumination. The in situ APXPS spectra indicate that the metallic Ni core absorbs the light, exciting plasmons, and creates hot electrons that are subsequently utilized through hot electron injection in the hydrogen evolution reaction (HER) by NiCO3. Additionally, the data show that NiO undergoes reversible oxidation to NiOOH in the presence of water vapor and light. The present work also investigates the contribution of carbonate and its involvement in the photocatalytic reaction mechanism, shedding light on this seldom-explored aspect of photocatalysis. The APXPS results highlight the photochemical reduction of carbonates into -COOH, contributing to the deactivation of the photocatalyst. This work demonstrates the APXPS efficacy in examining photochemical reactions, charge transfer dynamics and intermediates in potential photocatalysts under near realistic conditions.

10.
Biomed Environ Sci ; 37(5): 494-502, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38843922

ABSTRACT

Objective: To explore characteristics of clinical parameters and cytokines in patients with drug-induced liver injury (DILI) caused by different drugs and their correlation with clinical indicators. Method: The study was conducted on patients who were up to Review of Uncertainties in Confidence Assessment for Medical Tests (RUCAM) scoring criteria and clinically diagnosed with DILI. Based on Chinese herbal medicine, cardiovascular drugs, non-steroidal anti-inflammatory drugs (NSAIDs), anti-infective drugs, and other drugs, patients were divided into five groups. Cytokines were measured by Luminex technology. Baseline characteristics of clinical biochemical indicators and cytokines in DILI patients and their correlation were analyzed. Results: 73 patients were enrolled. Age among five groups was statistically different ( P = 0.032). Alanine aminotransferase (ALT) ( P = 0.033) and aspartate aminotransferase (AST) ( P = 0.007) in NSAIDs group were higher than those in chinese herbal medicine group. Interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in patients with Chinese herbal medicine (IL-6: P < 0.001; TNF-α: P < 0.001) and cardiovascular medicine (IL-6: P = 0.020; TNF-α: P = 0.001) were lower than those in NSAIDs group. There was a positive correlation between ALT ( r = 0.697, P = 0.025), AST ( r = 0.721, P = 0.019), and IL-6 in NSAIDs group. Conclusion: Older age may be more prone to DILI. Patients with NSAIDs have more severe liver damage in early stages of DILI, TNF-α and IL-6 may partake the inflammatory process of DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Cytokines , Humans , Chemical and Drug Induced Liver Injury/etiology , Male , Female , Middle Aged , Cytokines/blood , Cytokines/metabolism , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Drugs, Chinese Herbal/adverse effects , Alanine Transaminase/blood
11.
Phys Chem Chem Phys ; 26(25): 17902-17909, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38888148

ABSTRACT

The momentum distribution of photoelectrons in H2+ molecules subjected to an attosecond pulse is theoretically investigated. To better understand the laser-molecule interaction, we develop an in-line photoelectron holography approach that is analogous to optical holography. This approach is specifically suitable for extracting the amplitude and phase of the forward-scattered electron wave packet in a dissociating molecule with atomic precision. We also extend this approach to imaging the transient scattering cross-section of a molecule dressed by a near infrared laser field. This attosecond photoelectron holography sheds light on structural microscopy of dissociating molecules with high spatial-temporal resolution.

12.
J Stomatol Oral Maxillofac Surg ; : 101956, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942235

ABSTRACT

OBJECTIVE: To evaluate the clinical effectiveness and stability of open suture versus micro-screw anchored disc reduction and fixation in treating disc displacement without reduction in the anterior temporomandibular joint. METHODS: A total of 38 patients (51 sides) with anterior disc displacement without reduction (ADDwR) of the TMJ treated in our hospital from August 2021 to January 2023 were selected, including 19 cases in group A (23 sides) treated with open temporomandibular joint disc reduction and anchorage, and 19 cases in group B (28 sides) treated with temporomandibular joint disc reduction and suture. The Magnetic Resonance Imaging (MRI) data of the two groups before and after operation were compared to evaluate the effective rate of articular disc reduction, the change of articular disc length, The Maximal Interincisal Opening (MIO) and Numeric Rating Scale (NRS) were measured before and after operation. RESULTS: In group A, the MRI effective rate 6 months after disc reduction was 95.65% (22/23), the disc length gain was 1.74mm, MIO was 40.32±5.067mm, and NRS was 0.47±0.697. The MRI effective rate 6 months after disc reduction in group B was 100% (28/28). The disc length gain was 1.78mm, MIO was 41.58±3.746mm, and NRS was 0.00. There was no significant difference between the two groups (P>0.05). CONCLUSIONS: TMJ disc reduction and suture and open TMJ disc anchorage can effectively reduce the TMJ disc. The TMJ disc stability is high at 6 months after operation, and the pain and mouth opening can be improved, which is worthy of further promotion in clinical practice.

13.
Mol Neurodegener ; 19(1): 48, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38886816

ABSTRACT

BACKGROUND: Aging significantly elevates the risk of developing neurodegenerative diseases. Neuroinflammation is a universal hallmark of neurodegeneration as well as normal brain aging. Which branches of age-related neuroinflammation, and how they precondition the brain toward pathological progression, remain ill-understood. The presence of elevated type I interferon (IFN-I) has been documented in the aged brain, but its role in promoting degenerative processes, such as the loss of neurons in vulnerable regions, has not been studied in depth. METHODS: To comprehend the scope of IFN-I activity in the aging brain, we surveyed IFN-I-responsive reporter mice at multiple ages. We also examined 5- and 24-month-old mice harboring selective ablation of Ifnar1 in microglia to observe the effects of manipulating this pathway during the aging process using bulk RNA sequencing and histological parameters. RESULTS: We detected age-dependent IFN-I signal escalation in multiple brain cell types from various regions, especially in microglia. Selective ablation of Ifnar1 from microglia in aged mice significantly reduced overall brain IFN-I signature, dampened microglial reactivity, lessened neuronal loss, restored expression of key neuronal genes and pathways, and diminished the accumulation of lipofuscin, a core hallmark of cellular aging in the brain. CONCLUSIONS: Overall, our study demonstrates pervasive IFN-I activity during normal mouse brain aging and reveals a pathogenic, pro-degenerative role played by microglial IFN-I signaling in perpetuating neuroinflammation, neuronal dysfunction, and molecular aggregation. These findings extend the understanding of a principal axis of age-related inflammation in the brain, one likely shared with multiple neurological disorders, and provide a rationale to modulate aberrant immune activation to mitigate neurodegenerative process at all stages.


Subject(s)
Aging , Brain , Interferon Type I , Microglia , Signal Transduction , Animals , Aging/metabolism , Interferon Type I/metabolism , Mice , Brain/metabolism , Brain/pathology , Signal Transduction/physiology , Microglia/metabolism , Receptor, Interferon alpha-beta/metabolism , Neurons/metabolism
14.
Nanomedicine ; 59: 102754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797223

ABSTRACT

Exocytosis is a critical factor for designing efficient nanocarriers and determining cytotoxicity. However, the research on the exocytosis mechanism of nanoparticles, especially the role of long non-coding RNAs (lncRNAs), has not been reported. In this study, the exocytosis of AuNPs in the KYSE70 cells and the involved molecular pathways of exocytosis are analyzed. It demonstrates that nanoparticles underwent time-dependent release from the cells by exocytosis, and the release of ß-hexosaminidase confirms that AuNPs are excreted through lysosomes. Mechanistic studies reveal that lncRNA ESCCAL-1 plays a vital role in controlling the exocytosis of AuNPs through activation of the MAPK pathway, including the phosphorylation of ERK and JNK. The study implies that the ESCCAL-1-mediated pathway plays an important role in the exocytosis of AuNPs in KYSE70 cells. This finding has implications for the role of ESCCAL-1 on the drug resistance of esophagus cancer by controlling lysosome-mediated exocytosis.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Exocytosis , Gold , Metal Nanoparticles , RNA, Long Noncoding , Exocytosis/drug effects , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Cell Line, Tumor , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lysosomes/metabolism , Lysosomes/drug effects , MAP Kinase Signaling System/drug effects , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/genetics
15.
ISA Trans ; 150: 311-321, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729908

ABSTRACT

Unsupervised domain adaptation has been extensively researched in rotating-machinery cross-domain fault diagnosis. A multi-source domain adaptive network based on local kernelized higher-order moment matching is constructed in this research for rotating-machinery fault diagnosis. Firstly, a multi-branch network is designed to map each source-target pair to a domain-specific shared space and to extract domain-invariant features using domain adversarial thought. Then, a local kernelized higher-order moment matching algorithm is proposed to perform fine-grained matching in shared category subspace. Finally, a feature fusion strategy based on the local domain distribution deviation is applied to synthesize the output features of multiple classifiers to obtain diagnostic results. The experimental validation of two-branch and three-branch networks on two public datasets is carried out and average diagnostic accuracies both exceed 99%. The results demonstrate the effectiveness and superiority of the approach.

16.
J Colloid Interface Sci ; 671: 553-563, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38820840

ABSTRACT

Recently, the solar-driven interfacial evaporation desalination has attracted more and more attentions due to the advantages of low cost, zero energy consumption, and high water purification rate, etc. One of the bottlenecks of this emerging technique lies in a lack of simple and low-cost ways to construct three-dimensional (3D) hierarchical microstructures for photothermal membranes. To this end, a two-step strategy is carried out by combining surface functionalization with substrate engineering. Firstly, a silane coupling agent 3-aminopropyltriethoxysilane (APTES) is grafted onto an ideal photothermal material of Ti3C2Tx MXene, to improve the nanochannel sizes and hydrophilicity, which are attributed to enlarged interspaces of MXene and introduced hydrophilic group e.g., -NH2 and -OH, respectively. Secondly, a low-cost and robust nonwoven fiber (NWF) substrate, which has a 3D micron-sized mesh structure with interlaced fiber stacks, is employed as the skeleton to load enough APTES-grafted MXene by a simple soaking method. Benefited from above design, the Ti3C2Tx-APTES/NWF composite membrane with a 3D hierarchical structure shows enhanced light scattering and utilization, water transport and vapor escape. A remarkable evaporation rate of 1.457 kg m-2 h-1 and an evaporation efficiency of 91.48 % are attained for a large-area (5 × 5 cm2) evaporator, and the evaporation rate is further increased to 1.672 kg m-2 h-1 for a small-area (2 × 2 cm2) device. The rejection rates of salt ions and heavy metal ions are higher than 99 % and 99.99 %, respectively, and the removal rates of organic dye molecules are nearly to 100 %. Besides, the composite photothermal membrane exhibits great stabilities in harsh conditions such as high salinities, long cycling, large light intensities, strong acid/alkali environments, and mechanical bending. Most importantly, the photothermal membrane shows a considerable cost-effectiveness of 89.4 g h-1/$. Hence, this study might promote the commercialization of solar-driven interfacial evaporation desalination by collaboratively considering surface modification and substrate engineering for MXene.

17.
Med ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761802

ABSTRACT

BACKGROUND: Achieving universal health coverage (UHC) involves all individuals attaining accessible health interventions at an affordable cost. We examined current patterns and temporal trends of cancer mortality and UHC across sociodemographic index (SDI) settings, and quantified these association. METHODS: We used data from the Global Burden of Disease Study 2019 and Our World in Data. The UHC effective coverage index was obtained to assess the potential population health gains delivered by health systems. The estimated annual percentage change (EAPC) with a 95% confidence interval (CI) was calculated to quantify the trend of cancer age-standardized mortality rate (ASMR). A generalized linear model was applied to estimate the association between ASMR and UHC. FINDINGS: The high (EAPC = -0.9% [95% CI, -1.0%, -0.9%]) and high-middle (-0.9% [-1.0%, -0.8%]) SDI regions had the fastest decline in ASMR (per 100,000) for total cancers from 1990 to 2019. The overall UHC effective coverage index increased by 27.9% in the high-SDI quintile to 62.2% in the low-SDI quintile. A negative association was observed between ASMR for all-cancer (adjusted odds ratio [OR] = 0.87 [0.76, 0.99]), stomach (0.73 [0.56, 0.95]), breast (0.64 [0.52, 0.79]), cervical (0.42 [0.30, 0.60]), lip and oral cavity (0.55 [0.40, 0.75]), and nasopharynx (0.42 [0.26, 0.68]) cancers and high UHC level (the lowest as the reference). CONCLUSIONS: Our findings strengthen the evidence base for achieving UHC to improve cancer outcomes. FUNDING: This work is funded by the China National Natural Science Foundation and Chinese Academy of Medical Sciences Innovation Fund for Medical Science.

18.
Int J Biol Macromol ; 271(Pt 1): 132594, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38821811

ABSTRACT

A lipidated polysaccharide, HDPS-2II, was isolated from the dried larva of Holotrichia diomphalia, which is used in traditional Chinese medicine. The molecular weight of HDPS-2II was 5.9 kDa, which contained a polysaccharide backbone of →4)-ß-Manp-(1 â†’ 4,6)-ß-Manp-(1 â†’ [6)-α-Glcp-(1]n â†’ 6)-α-Glcp→ with the side chain α-Glcp-(6 â†’ 1)-α-Glcp-(6 â†’ linked to the C-4 of ß-1,4,6-Manp and four types of lipid chains including 4-(4-methyl-2-(methylamino)pentanamido)pentanoic acid, 5-(3-(tert-butyl)phenoxy)hexan-2-ol, N-(3-methyl-5-oxopentan-2-yl)palmitamide, and N-(5-amino-3-methyl-5-oxopentan-2-yl)stearamide. The lipid chains were linked to C-1 of terminal α-1,6-Glcp in carbohydrate chain through diacyl-glycerol. HDPS-2II exhibited DNA protective effects and antioxidative activity on H2O2- or adriamycin (ADM)-induced Chinese hamster lung cells. Furthermore, HDPS-2II significantly ameliorated chromosome aberrations and the accumulation of reactive oxygen species (ROS), reduced γ-H2AX signaling and the expressions of NADPH oxidase (NOX)2, NOX4, P22phox, and P47phox in ADM-induced cardiomyocytes. Mechanistically, HDPS-2II suppressed ADM-induced up-regulation of NOX2 and NOX4 in cardiomyocytes, but not in NOX2 or NOX4 knocked-down cardiomyocytes, indicating that HDPS-2II could relieve intracellular DNA damage by regulating NOX2/NOX4 signaling. These findings demonstrate that HDPS-2II is a new potential DNA protective agent.


Subject(s)
DNA Damage , Glycolipids , Animals , DNA Damage/drug effects , Glycolipids/pharmacology , Glycolipids/chemistry , Coleoptera , Reactive Oxygen Species/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry , Cricetulus , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification
19.
Pathol Res Pract ; 258: 155357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772116

ABSTRACT

Member of the V-type ATPase family have attracted vast attention in tumor progression. Nevertheless, the specific member of V-ATPase, ATP6V1C2, its regulatory function in colorectal cancer (CRC) progression was poorly understood. In this study, comprehensive analyses demonstrated the role of ATP6V1C2 in CRC progression and drug screening based on ATP6V1C2 was carried out. As a result, among the ATPV1s family, ATP6V1C2 was significantly highly expressed in CRC. Immuno-infiltration analysis suggests that, the interaction between CRC cells and immune cells resulting in reduced immune and estimate scores. GSEA analysis found that, ATP6V1C2 negatively correlates with immune cells,especially CD8T cells. Next, Ecotyper database queries indicated that ATP6V1C2 was negatively correlates with characteristic gene expression in CD8T cells. Then, COX regression analysis and survival curves made it clear that ATP6V1C2 is positively correlates with clinicopathological progression leading to poor CRC prognosis. CellMiner explore told us LOR-253 and Sonidegib may be effective in CRC cancer treatment. Molecular Docking between ATP6V1C2 and 9 first-line and 9 natural drugs showed that ATP6V1C2 was recognized by the best geometrical and energetic matching pattern of 2 First-line and 4 natural drugs. RT-PCR and immunoblotting confirmed that ATP6V1C2 was significantly overexpressed in CRC. Four natural drugs screened by molecular docking were effective in cell proliferation inhibition by CCK8 test. In summary, ATP6V1C2 may be a new therapeutic target for CRC. The illustration is shown in Figure 9.


Subject(s)
Colorectal Neoplasms , Female , Humans , Male , Middle Aged , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Drug Development , Molecular Docking Simulation , Prognosis
20.
Anal Chem ; 96(22): 9043-9050, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38774984

ABSTRACT

Zearalenone (ZEN) is an extremely hazardous chemical widely existing in cereals, and its high-sensitivity detection possesses significant significance to human health. Here, the cathodic aggregation-induced electrochemiluminescence (AIECL) performance of tetraphenylethylene nanoaggregates (TPE NAs) was modulated by solvent regulation, based on which an electrochemiluminescence (ECL) aptasensor was constructed for sensitive detection of ZEN. The aggregation state and AIECL of TPE NAs were directly and simply controlled by adjusting the type of organic solvent and the fraction of water, which solved the current shortcomings of low strength and weak stability of the cathode ECL signal for TPE. Impressively, in a tetrahydrofuran-water mixed solution (volume ratio, 6:4), the relative ECL efficiency of TPE NAs reached 16.03%, which was 9.2 times that in pure water conditions, and the maximum ECL spectral wavelength was obviously red-shifted to 617 nm. In addition, "H"-shape DNA structure-mediated dual-catalyzed hairpin self-assembly (H-D-CHA) with higher efficiency by the synergistic effect between the two CHA reactions was utilized to construct a sensitive ECL aptasensor for ZEN analysis with a low detection limit of 0.362 fg/mL. In conclusion, solvent regulation was a simple and efficient method for improving the performance of AIECL materials, and the proposed ECL aptasensor had great potential for ZEN monitoring in food safety.


Subject(s)
Electrochemical Techniques , Electrodes , Luminescent Measurements , Solvents , Zearalenone , Zearalenone/analysis , Zearalenone/chemistry , Solvents/chemistry , Stilbenes/chemistry , Limit of Detection , Biosensing Techniques , Aptamers, Nucleotide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...