Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Orthop Surg Res ; 19(1): 225, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576008

ABSTRACT

OBJECTIVE: This study was performed to investigate the effectiveness of two surgical procedures, autologous patellar tendon graft reconstruction and trans-tibial plateau pull-out repair, using a pig model. The primary focus was to assess the repair capability of medial meniscus posterior portion (MMPP) deficiency, the overall structural integrity of the meniscus, and protection of the femoral and tibial cartilage between the two surgical groups. The overall aim was to provide experimental guidelines for clinical research using these findings. METHODS: Twelve pigs were selected to establish a model of injury to the MMPP 10 mm from the insertion point of the tibial plateau. They were randomly divided into three groups of four animals each: reconstruction (autologous tendon graft reconstruction of the MMPP), pull-out repair (suture repair of the MMPP via a trans-tibial plateau bone tunnel), and control (use of a normal medial meniscus as the negative control). The animals were euthanized 12 weeks postoperatively for evaluation of the meniscus, assessment of tendon bone healing, and gross observation of knee joint cartilage. The tibial and femoral cartilage injuries were evaluated using the International Society for Cartilage Repair (ICRS) grade and Mankin score. Histological and immunohistochemical staining was conducted on the meniscus-tendon junction area, primary meniscus, and tendons. The Ishida score was used to evaluate the regenerated meniscus in the reconstruction group. Magnetic resonance imaging (MRI) was used to evaluate meniscal healing. RESULTS: All 12 pigs recovered well after surgery; all incisions healed without infection, and no obvious complications occurred. Gross observation revealed superior results in the reconstruction and pull-out repair groups compared with the control group. In the tibial cartilage, the reconstruction group had ICRS grade I injury whereas the pull-out repair and control groups had ICRS grade II and III injury, respectively. The Mankin score was significantly different between the reconstruction and control groups; histological staining showed that the structure of the regenerated meniscus in the reconstruction group was similar to that of the original meniscus. Immunohistochemical staining showed that the degree of type I and II collagen staining was similar between the regenerated meniscus and the original meniscus in the reconstruction group. The Ishida score was not significantly different between the regenerated meniscus and the normal primary meniscus in the reconstruction group. MRI showed that the MMPP in the reconstruction and pull-out repair groups had fully healed, whereas that in the control group had not healed. CONCLUSION: Autologous patellar tendon graft reconstruction of the MMPP can generate a fibrocartilage-like regenerative meniscus. Both reconstruction and pull-out repair can preserve the structural integrity of the meniscus, promote healing of the MMPP, delay meniscal degeneration, and protect the knee cartilage.


Subject(s)
Cartilage Diseases , Meniscus , Patellar Ligament , Animals , Cartilage Diseases/surgery , Menisci, Tibial/diagnostic imaging , Menisci, Tibial/surgery , Meniscus/surgery , Patellar Ligament/diagnostic imaging , Patellar Ligament/surgery , Patellar Ligament/pathology , Swine
2.
Plants (Basel) ; 12(10)2023 May 14.
Article in English | MEDLINE | ID: mdl-37653892

ABSTRACT

Carotenoid cleavage oxygenase (CCO) is an enzyme that can catalyze carotenoids to volatile aromatic substances and participate in the biosynthesis of two important phytohormones, i.e., abscisic acid (ABA) and strigolactone (SL). However, the genome-wide identification and analysis of the CCO gene family in the rare and endangered woody plant Liriodendron chinense has not been reported. Here, we performed a genome-wide analysis of the CCO gene family in the L. chinense genome and examined its expression pattern during different developmental processes and in response to various abiotic stresses. A total of 10 LcCCO genes were identified and divided into 6 subfamilies according to the phylogenetic analysis. Subcellular localization prediction showed that most of the LcCCO proteins were located in the cytoplasm. Gene replication analysis showed that segmental and tandem duplication contributed to the expansion of this gene family in the L. chinense genome. Cis-element prediction showed that cis-elements related to plant hormones, stress and light response were widely distributed in the promoter regions of LcCCO genes. Gene expression profile analysis showed that LcNCED3b was extensively involved in somatic embryogenesis, especially the somatic embryo maturation, as well as in response to heat and cold stress in leaves. Furthermore, qRT-PCR analysis showed that LcNCED3b obviously responded to drought stress in roots and leaves. This study provides a comprehensive overview of the LcCCO gene family and a potential gene target for the optimization of the somatic embryogenesis system and resistance breeding in the valuable forest tree L. chinense.

3.
Physiol Meas ; 44(9)2023 09 22.
Article in English | MEDLINE | ID: mdl-37160128

ABSTRACT

Objective.A percutaneous left ventricular assist device (PLVAD) can be used as a bridge to heart transplantation or as a temporary support for end-stage heart failure. Transvalvularly placed PLVADs may result in aortic regurgitation due to unstable pump position during fully supported operation, which may diminish the pumping effect of forward flow and predispose to complications. Therefore, accurate characterization of aortic regurgitation is essential for proper modeling of heart-pump interactions and validation of control strategies.Approach.In the present study, an improved aortic valve model was used to analyze the severity of regurgitation produced by different pump position offsets. The link between pump position offset degree and regurgitation is validated in the fixed speed mode, and the influence of pump speed on regurgitation is verified in the variable speed mode, using the mock circulatory loop (MCL) experimental platform.Main results.The greater the pump offset and the more severe the regurgitation, the more carefully the pump speed needs to be managed. To avoid over-pumping, the recommended pump speed in this study should not exceed 30 000 rpm.Significance.The modeling approach provide in this study not only makes it easier to comprehend the impact of regurgitation events on the entire interactive system during mechanical assistance, but it also aids in providing timely alerts and suitable management measures.


Subject(s)
Aortic Valve Insufficiency , Heart Transplantation , Heart-Assist Devices , Humans , Aortic Valve Insufficiency/diagnostic imaging , Aortic Valve Insufficiency/surgery , Heart
4.
Heliyon ; 9(5): e16153, 2023 May.
Article in English | MEDLINE | ID: mdl-37215879

ABSTRACT

Background: Anoikis, a form of apoptosis induced by cell detachment, plays a key role in cancer metastasis. However, the potential roles of anoikis-related genes (ARGs) in assessing the prognosis of skin cutaneous melanoma (SKCM) and the tumor microenvironment (TME) remain unclear. Methods: The data from TCGA corresponding to transcriptomic expression patterns for patients with SKCM were downloaded and utilized to screen distinct molecular subtypes by a non-negative matrix factorization algorithm. The prognostic signature was constructed by least absolute shrinkage and selection operator (LASSO) Cox regression and was validated in SKCM patients from the GEO cohort. Moreover, the relationship of the ARG_score with prognosis, tumor-infiltrating immune cells, gene mutation, microsatellite instability (MSI), and immunotherapy efficacy. Results: We screened 100 anoikis-related differentially expressed genes between SKCM tissues and normal skin tissues, which could divide all patients into three different subtypes with significantly distinct prognosis and immune cell infiltration. Then, an anoikis-related signature was developed based on subtype-related DEGs, which could classify all SKCM patients into low and high ARG_score groups with differing overall survival (OS) rates. ARG_score was confirmed to be a strong independent prognostic indicator for SKCM patients. By combining ARG_score with clinicopathological features, a nomogram was constructed, which could accurately predict the individual OS of patients with SKCM. Moreover, low ARG_score patients presented with higher levels of immune cell infiltration, TME score, higher tumor mutation burden, and better immunotherapy responses. Conclusions: Our comprehensive analysis of ARGs in SKCM provides important insights into the immunological microenvironment within the tumor of SKCM patients and helps to forecast prognosis and the response to immunotherapy in SKCM patients, thereby making it easier to tailor more effective treatment strategies to individual patients.

5.
Genes (Basel) ; 14(3)2023 03 22.
Article in English | MEDLINE | ID: mdl-36981040

ABSTRACT

Terpenoids play a key role in plant growth and development, supporting resistance regulation and terpene synthase (TPS), which is the last link in the synthesis process of terpenoids. Liriodendron chinense, commonly called the Chinese tulip tree, is a rare and endangered tree species of the family Magnoliaceae. However, the genome-wide identification of the TPS gene family and its transcriptional responses to development and abiotic stress are still unclear. In the present study, we identified a total of 58 TPS genes throughout the L. chinense genome. A phylogenetic tree analysis showed that they were clustered into five subfamilies and unevenly distributed across six chromosomes. A cis-acting element analysis indicated that LcTPSs were assumed to be highly responsive to stress hormones, such as methyl jasmonate (MeJA) and abscisic acid (ABA). Consistent with this, transcriptome data showed that most LcTPS genes responded to abiotic stress, such as cold, drought, and hot stress, at the transcriptional level. Further analysis showed that LcTPS genes were expressed in a tissue-dependent manner, especially in buds, leaves, and bark. Quantitative reverse transcription PCR (qRT-PCR) analysis confirmed that LcTPS expression was significantly higher in mature leaves compared to young leaves. These results provide a reference for understanding the function and role of the TPS family, laying a foundation for further study of the regulation of TPS in terpenoid biosynthesis in L. chinense.


Subject(s)
Liriodendron , Phylogeny , Liriodendron/genetics , Genes, Plant , Terpenes/metabolism
6.
Melanoma Manag ; 10(2): MMT65, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38230203

ABSTRACT

Aim: To identify distinct disulfidptosis-molecular subtypes and develop a novel prognostic signature. Methods/materials: We integrated into this study multiple SKCM transcriptomic datasets from the Cancer Genome Atlas database and Gene Expression Omnibus dataset. The consensus clustering algorithm was applied to categorize SKCM patients into different DRG subtypes. Results: Three distinct DRG subtypes were identified, which were correlated to different clinical outcomes and signaling pathways. Then, a disulfidptosis-relaed signature and nomogram were constructed, which could accurately predict the individual OS of patients with SKCM. The high-risk group was less sensitive to immunotherapy than the low-risk group. Conclusion: The signature can assist healthcare professionals in making more accurate and individualized treatment choices for patients with SKCM.

7.
Front Microbiol ; 14: 1288585, 2023.
Article in English | MEDLINE | ID: mdl-38260891

ABSTRACT

Introduction: The contamination of Trichoderma species causing green mold in substrates poses a significant obstacle to the global production of Lentinula edodes, adversely impacting both yield and quality of fruiting bodies. However, the diversity of Trichoderma species in the contaminated substrates of L. edodes (CSL) in China is not clear. The purpose of this study was to assess the biodiversity of Trichoderma species in CSL, and their interactions with L. edodes. Methods: A comprehensive two-year investigation of the biodiversity of Trichoderma species in CSL was conducted with 150 samples collected from four provinces of China. Trichoderma strains were isolated and identified based on integrated studies of phenotypic and molecular data. Resistance of L. edodes to the dominant Trichoderma species was evaluated in dual culture in vitro. Results: A total of 90 isolates were obtained and identified as 14 different Trichoderma species, including six new species named as Trichoderma caespitosus, T. macrochlamydospora, T. notatum, T. pingquanense, T. subvermifimicola, and T. tongzhouense, among which, T. atroviride, T. macrochlamydospora and T. subvermifimicola were identified as dominant species in the CSL. Meanwhile, three known species, namely, T. auriculariae, T. paraviridescens and T. subviride were isolated from CSL for the first time in the world, and T. paratroviride was firstly reported to be associated with L. edodes in China. Notebly, the in vitro evaluation of L. edodes resistance to dominant Trichoderma species showed strains of L. edodes generally possess poor resistance to Trichoderma contamination with L. edodes strain SX8 relatively higher resistant. Discussion: This study systematically investigated the diversity of Trichoderma species in the contaminated substrate of L. edodes, and a total of 31 species so far have been reported, indicating that green mold contaminated substrates of edible fungi were undoubtedly a biodiversity hotspot of Trichoderma species. Results in this study will provide deeper insight into the genus Trichoderma and lay a strong foundation for scientific management of the Trichoderma contamination in L. edodes cultivation.

8.
J Fungi (Basel) ; 8(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36354921

ABSTRACT

Trichoderma is known worldwide as biocontrol agents of plant diseases, producers of enzymes and antibiotics, and competitive contaminants of edible fungi. In this investigation of contaminated substrates of edible fungi from North China, 39 strains belonging to 10 Trichoderma species isolated from four kinds of edible fungi were obtained, and three novel species belonging to the Harzianum clade were isolated from the contaminated substrates of Auricularia heimuer and Pholiota adipose. They were recognized based on integrated studies of phenotypic features, culture characteristics, and molecular analyses of RNA polymerase II subunit B and translation elongation factor 1-α genes. Trichoderma auriculariae was strongly supported as a separate lineage and differed from T. vermifimicola due to its larger conidia. Trichoderma miyunense was closely related to T. ganodermatigerum but differed due to its smaller conidia and higher optimum mycelial growth temperature. As a separate lineage, T. pholiotae was distinct from T. guizhouense and T. pseudoasiaticum due to its higher optimum mycelial growth temperature and larger conidia. This study extends the understanding of Trichoderma spp. contaminating substrates of edible fungi and updates knowledge of species diversity in the group.

9.
Genes (Basel) ; 13(10)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36292631

ABSTRACT

Primordium formation is extremely important for yield of Pleurotus tuoliensis. However, the molecular mechanism underlying primordium formation is largely unknown. This study investigated the transcriptional properties during primordium formation of P. tuoliensis by comparing transcriptome. Clean reads were assembled into 57,075 transcripts and 6874 unigenes. A total of 1397 differentially expressed genes were identified (26 DEGs altered in all stages). GO and KEGG enrichment analysis showed that these DEGs were involved in "oxidoreductase activity", "glycolysis/gluconeogenesis", "MAPK signaling pathways", and "ribosomes". Our results support further understanding of the transcriptional changes and molecular processes underlying primordium formation and differentiation of P. tuoliensis.


Subject(s)
Pleurotus , Pleurotus/genetics , Gene Expression Profiling , Transcriptome/genetics , Oxidoreductases/genetics
11.
Nat Metab ; 4(2): 239-253, 2022 02.
Article in English | MEDLINE | ID: mdl-35145325

ABSTRACT

Tumors can reprogram the functions of metabolic enzymes to fuel malignant growth; however, beyond their conventional functions, key metabolic enzymes have not been found to directly govern cell mitosis. Here, we report that glutamine synthetase (GS) promotes cell proliferation by licensing mitotic progression independently of its metabolic function. GS depletion, but not impairment of its enzymatic activity, results in mitotic arrest and multinucleation across multiple lung and liver cancer cell lines, patient-derived organoids and xenografted tumors. Mechanistically, GS directly interacts with the nuclear pore protein NUP88 to prevent its binding to CDC20. Such interaction licenses activation of the CDC20-mediated anaphase-promoting complex or cyclosome to ensure proper metaphase-to-anaphase transition. In addition, GS is overexpressed in human non-small cell lung cancer and its depletion reduces tumor growth in mice and increases the efficacy of microtubule-targeted chemotherapy. Our findings highlight a moonlighting function of GS in governing mitosis and illustrate how an essential metabolic enzyme promotes cell proliferation and tumor development, beyond its main metabolic function.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Cell Cycle Proteins/metabolism , Cell Proliferation , Glutamate-Ammonia Ligase , Humans , Mice , Mitosis
12.
Front Oncol ; 11: 770843, 2021.
Article in English | MEDLINE | ID: mdl-34746012

ABSTRACT

As a central cellular program to sense and transduce stress signals, the integrated stress response (ISR) pathway has been implicated in cancer initiation and progression. Depending on the genetic mutation landscape, cellular context, and differentiation states, there are emerging pieces of evidence showing that blockage of the ISR can selectively and effectively shift the balance of cancer cells toward apoptosis, rendering the ISR a promising target in cancer therapy. Going beyond its pro-survival functions, the ISR can also influence metastasis, especially via proteostasis-independent mechanisms. In particular, ISR can modulate metastasis via transcriptional reprogramming, in the help of essential transcription factors. In this review, we summarized the current understandings of ISR in cancer metastasis from the perspective of transcriptional regulation.

13.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281216

ABSTRACT

GAox is a key enzyme for the transformation of gibberellins, and belongs to the 2-ketoglutarate dependent dioxygenase gene family (2ODD). However, a systematic analysis of GAox in the angiosperm L. chinense has not yet been reported. Here, we identified all LcGAox gene family members in L. chinense, which were classified into the three subgroups of GA20ox, C19GA2ox, and C20GA2ox. Comparison of the gene structure, conserve motifs, phylogenetic relationships, and syntenic relationships of gibberellin oxidase gene families in different species indicated that the gene functional differences may be due to the partial deletion of their domains during evolution. Furthermore, evidence for purifying selection was detected between orthologous GAox genes in rice, grape, Arabidopsis, and L. chinense. Analysis of the codon usage patterns showed that mutation pressure and natural selection might have induced codon usage bias in angiosperms; however, the LcGAox genes in mosses, lycophytes, and ambarella plants exhibited no obvious codon usage preference. These results suggested that the gibberellin oxidase genes were more primitive. The gene expression pattern was analyzed in different organs subjected to multiple abiotic stresses, including GA, abscisic acid (ABA), and chlormequat (CCC) treatment, by RNA-seq and qRT-PCR, and the stress- and phytohormone-responsive cis-elements were counted. The results showed that the synthesis and decomposition of GA were regulated by different LcGAox genes in the vegetative and reproductive organs of L. chinense, and only LcGA2ox1,4, and 7 responded to the NaCl, polyethylene glycol, 4 °C, GA, ABA, and CCC treatment in the roots, stems, and leaves of seedlings at different time periods, revealing the potential role of LcGAox in stress resistance.


Subject(s)
Gibberellins/metabolism , Liriodendron/genetics , Oxidoreductases/genetics , Codon Usage , Gene Expression Regulation, Plant , Liriodendron/enzymology , Multigene Family , Promoter Regions, Genetic , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...