Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Eur J Med Chem ; 272: 116467, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38735150

The World Health Organization (WHO) identifies several bunyaviruses as significant threats to global public health security. Developing effective therapies against these viruses is crucial to combat future outbreaks and mitigate their impact on patient outcomes. Here, we report the synthesis of some isoindol-1-one derivatives and explore their inhibitory properties over an indispensable metal-dependent cap-snatching endonuclease (Cap-ENDO) shared among evolutionary divergent bunyaviruses. The compounds suppressed RNA hydrolysis by Cap-ENDOs, with IC50 values predominantly in the lower µM range. Molecular docking studies revealed the interactions with metal ions to be essential for the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold activity. Calorimetric analysis uncovered Mn2+ ions to have the highest affinity for sites within the targets, irrespective of aminoacidic variations influencing metal cofactor preferences. Interestingly, spectrophotometric findings unveiled sole dinuclear species formation between the scaffold and Mn2+. Moreover, the complexation of two Mn2+ ions within the viral enzymes appears to be favourable, as indicated by the binding of compound 11 to TOSV Cap-ENDO (Kd = 28 ± 3 µM). Additionally, the tendency of compound 11 to stabilize His+ more than His- Cap-ENDOs suggests exploitable differences in their catalytic pockets relevant to improving specificity. Collectively, our results underscore the isoindolinone scaffold's potential as a strategic starting point for the design of pan-antibunyavirus drugs.


Drug Design , Endonucleases , Molecular Docking Simulation , Endonucleases/metabolism , Endonucleases/antagonists & inhibitors , Isoindoles/chemical synthesis , Isoindoles/pharmacology , Isoindoles/chemistry , Structure-Activity Relationship , Molecular Structure , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Bunyaviridae/drug effects , Bunyaviridae/metabolism , Dose-Response Relationship, Drug , Humans
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167034, 2024 03.
Article En | MEDLINE | ID: mdl-38278334

L-Ser supply in the central nervous system of mammals mostly relies on its endogenous biosynthesis by the phosphorylated pathway (PP). Defects in any of the three enzymes operating in the pathway result in a group of neurometabolic diseases collectively known as serine deficiency disorders (SDDs). Phosphoserine phosphatase (PSP) catalyzes the last, irreversible step of the PP. Here we investigated in detail the role of physiological modulators of human PSP activity and the properties of three natural PSP variants (A35T, D32N and M52T) associated with SDDs. Our results, partially contradicting previous reports, indicate that: i. PSP is almost fully saturated with Mg2+ under physiological conditions and fluctuations in Mg2+ and Ca2+ concentrations are unlikely to play a modulatory role on PSP activity; ii. Inhibition by L-Ser, albeit at play on the isolated PSP, does not exert any effect on the flux through the PP unless the enzyme activity is severely impaired by inactivating substitutions; iii. The so-far poorly investigated A35T substitution was the most detrimental, with a 50-fold reduction in catalytic efficiency, and a reduction in thermal stability (as well as an increase in the IC50 for L-Ser). The M52T substitution had similar, but milder effects, while the D32N variant behaved like the wild-type enzyme. iv. Predictions of the structural effects of the A35T and M52T substitutions with ColabFold suggest that they might affect the structure of the flexible helix-loop region.


Dapsone/analogs & derivatives , Magnesium , Phosphoric Monoester Hydrolases , Serine , Animals , Humans , Serine/metabolism , Magnesium/pharmacology , Ions , Mammals/metabolism
3.
J Enzyme Inhib Med Chem ; 38(1): 2236802, 2023 Dec.
Article En | MEDLINE | ID: mdl-37470394

Natural α-glucosidase inhibitors from plant-based foods such as catechins offer an attractive strategy for their potential anti-diabetic effects. In this study, infusions of three different tea types (green, white, and oolong) were investigated for their total phenolic (TPC) and catechins (EGCG, ECG, EGC, and EC) content, and for their α-glucosidase inhibitory activities. We observed that the level of TPC in white tea was significantly higher compared to oolong and green tea, which suggests higher content of EGCG and ECG catechins in fresh young leaves. Our findings showed that the higher content of such catechins in the infusion of white tea well correlated with a strong inhibition of α-glucosidase, and such inhibition was demonstrated to be more effective than the FDA-approved drug acarbose. Then, we computationally explored the molecular requirements for enzyme inhibition, especially for the most active catechins EGCG and ECG, as well as their disposition/stability within the active site.


Catechin , Glycoside Hydrolase Inhibitors , alpha-Glucosidases , Catechin/chemistry , Catechin/pharmacology , Phenols , Plant Extracts/chemistry , Tea/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology
4.
Int J Mol Sci ; 23(14)2022 Jul 10.
Article En | MEDLINE | ID: mdl-35886972

We report the synthesis and characterization of three half-sandwich Ru(II) arene complexes [(η6-arene)Ru(N,N')L][PF6]2 containing arene = p-cymene, N,N' = bipyridine, and L = pyridine meta- with methylenenaphthalimide (C1), methylene(nitro)naphthalimide (C2), or methylene(piperidinyl)naphthalimide (C3). The naphthalimide acts as an antenna for photoactivation. After 3 h of irradiation with blue light, the monodentate pyridyl ligand had almost completely dissociated from complex C3, which contains an electron donor on the naphthalimide ring, whereas only 50% dissociation was observed for C1 and C2. This correlates with the lower wavelength and strong absorption of C3 in this region of the spectrum (λmax = 418 nm) compared with C1 and C2 (λmax = 324 and 323 nm, respectively). All the complexes were relatively non-toxic towards A549 human lung cancer cells in the dark, but only complex C3 exhibited good photocytoxicity towards these cancer cells upon irradiation with blue light (IC50 = 10.55 ± 0.30 µM). Complex C3 has the potential for use in photoactivated chemotherapy (PACT).


Antineoplastic Agents , Coordination Complexes , Ruthenium , A549 Cells , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Coordination Complexes/pharmacology , Humans , Ligands , Molecular Structure , Naphthalimides/pharmacology , Ruthenium/pharmacology
5.
Front Chem ; 10: 832431, 2022.
Article En | MEDLINE | ID: mdl-35480391

The papain-like protease (PLpro) of SARS-CoV-2 is essential for viral propagation and, additionally, dysregulation of the host innate immune system. Using a library of 40 potential metal-chelating compounds we performed an X-ray crystallographic screening against PLpro. As outcome we identified six compounds binding to the target protein. Here we describe the interaction of one hydrazone (H1) and five thiosemicarbazone (T1-T5) compounds with the two distinct natural substrate binding sites of PLpro for ubiquitin and ISG15. H1 binds to a polar groove at the S1 binding site by forming several hydrogen bonds with PLpro. T1-T5 bind into a deep pocket close to the polyubiquitin and ISG15 binding site S2. Their interactions are mainly mediated by multiple hydrogen bonds and further hydrophobic interactions. In particular compound H1 interferes with natural substrate binding by sterical hindrance and induces conformational changes in protein residues involved in substrate binding, while compounds T1-T5 could have a more indirect effect. Fluorescence based enzyme activity assay and complementary thermal stability analysis reveal only weak inhibition properties in the high micromolar range thereby indicating the need for compound optimization. Nevertheless, the unique binding properties involving strong hydrogen bonding and the various options for structural optimization make the compounds ideal lead structures. In combination with the inexpensive and undemanding synthesis, the reported hydrazone and thiosemicarbazones represent an attractive scaffold for further structure-based development of novel PLpro inhibitors by interrupting protein-protein interactions at the S1 and S2 site.

6.
Bioorg Chem ; 116: 105388, 2021 11.
Article En | MEDLINE | ID: mdl-34670331

Seasonal influenza A and B viruses represent a global concern. Antiviral drugs are crucial to treat severe influenza in high-risk patients and prevent virus spread in case of a pandemic. The emergence of viruses showing drug resistance, in particular for the recently licensed polymerase inhibitor baloxavir marboxil, drives the need for developing alternative antivirals. The endonuclease activity residing in the N-terminal domain of the polymerase acidic protein (PAN) is crucial for viral RNA synthesis and a validated target for drug design. Its function can be impaired by molecules bearing a metal-binding pharmacophore (MBP) able to coordinate the two divalent metal ions in the active site. In the present work, the 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one scaffold is explored for the inhibition of influenza virus PA endonuclease. The structure-activity relationship was analysed by modifying the substituents on the lipophilic moiety linked to the MBP. The new compounds exhibited nanomolar inhibitory activity in a FRET-based enzymatic assay, and a few compounds (15-17, 21) offered inhibition in the micromolar range, in a cell-based influenza virus polymerase assay. When investigated against a panel of PA-mutant forms, compound 17 was shown to retain full activity against the baloxavir-resistant I38T mutant. This was corroborated by docking studies providing insight into the binding mode of this novel class of PA inhibitors.


Antiviral Agents/pharmacology , Enzyme Inhibitors/pharmacology , Isoindoles/pharmacology , Orthomyxoviridae/drug effects , RNA-Dependent RNA Polymerase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Isoindoles/chemical synthesis , Isoindoles/chemistry , Molecular Docking Simulation , Molecular Structure , Orthomyxoviridae/enzymology , RNA-Dependent RNA Polymerase/metabolism , Structure-Activity Relationship , Viral Proteins/metabolism
7.
Int J Mol Sci ; 22(9)2021 Apr 26.
Article En | MEDLINE | ID: mdl-33926042

The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.


Aflatoxins/chemistry , Aflatoxins/isolation & purification , Aspergillus flavus/chemistry , Aflatoxins/toxicity , Antifungal Agents/pharmacology , Aspergillus/metabolism , Aspergillus/pathogenicity , Aspergillus flavus/isolation & purification , Aspergillus flavus/metabolism , Aspergillus flavus/pathogenicity , Crops, Agricultural/microbiology , Ecosystem , Food Contamination/prevention & control , Fungi/drug effects , Fungicides, Industrial/pharmacology , Humans , Mycotoxins/toxicity , Thiosemicarbazones/chemistry
8.
ACS Med Chem Lett ; 11(10): 1986-1992, 2020 Oct 08.
Article En | MEDLINE | ID: mdl-33062183

Photoaffinity labeling (PAL) is one of the upcoming and powerful tools in the field of molecular recognition. It includes the determination of dynamic parameters, such as the identification and localization of the target protein and the site of drug binding. In this study, a photoaffinity-labeled probe for full-length human immunodeficiency virus-1 integrase (HIV-1 IN) capture was designed and synthesized, following the structure of the FDA-approved drug Raltegravir. This photoprobe was found to retain the HIV IN inhibitory potential in comparison with its parent molecule and demonstrates the ability to label the HIV-1 IN protein. Putative photoprobe/inhibitor binding sites near the catalytic site were then identified after protein digestion coupled to mass and molecular modeling analyses.

9.
Sci Rep ; 10(1): 17686, 2020 10 19.
Article En | MEDLINE | ID: mdl-33077881

Great are the expectations for a new generation of antimicrobials, and strenuous are the research efforts towards the exploration of diverse molecular scaffolds-possibly of natural origin - aimed at the synthesis of new compounds against the spread of hazardous fungi. Also high but winding are the paths leading to the definition of biological targets specifically fitting the drug's structural characteristics. The present study is addressed to inspect differential biological behaviours of cinnamaldehyde and benzaldehyde thiosemicarbazone scaffolds, exploiting the secondary metabolism of the mycotoxigenic phytopathogen Aspergillus flavus. Interestingly, owing to modifications on the parent chemical scaffold, some thiosemicarbazones displayed an increased specificity against one or more developmental processes (conidia germination, aflatoxin biosynthesis, sclerotia production) of A. flavus biology. Through the comparative analysis of results, the ligand-based screening strategy here described has allowed us to delineate which modifications are more promising for distinct purposes: from the control of mycotoxins contamination in food and feed commodities, to the environmental management of microbial pathogens, to the investigation of specific structure-activity features for new generation drug discovery.


Acrolein/analogs & derivatives , Aspergillus flavus/metabolism , Benzaldehydes/chemistry , Acrolein/chemistry , Acrolein/metabolism , Aflatoxins/biosynthesis , Aspergillus flavus/genetics , Benzaldehydes/metabolism , Databases, Protein , Molecular Structure , RNA, Fungal/genetics , Saccharomyces cerevisiae/metabolism , Spectrum Analysis/methods
10.
Antiviral Res ; 183: 104947, 2020 11.
Article En | MEDLINE | ID: mdl-32980445

Several fatal bunyavirus infections lack specific treatment. Here, we show that diketo acids engage a panel of bunyavirus cap-snatching endonucleases, inhibit their catalytic activity and reduce viral replication of a taxonomic representative in vitro. Specifically, the non-salt form of L-742,001 and its derivatives exhibited EC50 values between 5.6 and 6.9 µM against a recombinant BUNV-mCherry virus. Structural analysis and molecular docking simulations identified traits of both the class of chemical entities and the viral target that could help the design of novel, more potent molecules for the development of pan-bunyavirus antivirals.


Antiviral Agents/pharmacology , Bunyaviridae/drug effects , Bunyaviridae/enzymology , Endonucleases/antagonists & inhibitors , Hydroxybutyrates/pharmacology , Piperidines/pharmacology , Viral Proteins/antagonists & inhibitors , Catalytic Domain , Crystallography, X-Ray , Endonucleases/metabolism , Molecular Docking Simulation , RNA Caps/metabolism , Virus Replication/drug effects
11.
Viruses ; 12(7)2020 07 06.
Article En | MEDLINE | ID: mdl-32640577

HIV-1 infection requires life-long treatment and with 2.1 million new infections/year, faces the challenge of an increased rate of transmitted drug-resistant mutations. Therefore, a constant and timely effort is needed to identify new HIV-1 inhibitors active against drug-resistant variants. The ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase (RT) is a very promising target, but to date, still lacks an efficient inhibitor. Here, we characterize the mode of action of N'-(2-hydroxy-benzylidene)-3,4,5-trihydroxybenzoylhydrazone (compound 13), an N-acylhydrazone derivative that inhibited viral replication (EC50 = 10 µM), while retaining full potency against the NNRTI-resistant double mutant K103N-Y181C virus. Time-of-addition and biochemical assays showed that compound 13 targeted the reverse-transcription step in cell-based assays and inhibited the RT-associated RNase H function, being >20-fold less potent against the RT polymerase activity. Docking calculations revealed that compound 13 binds within the RNase H domain in a position different from other selective RNase H inhibitors; site-directed mutagenesis studies revealed interactions with conserved amino acid within the RNase H domain, suggesting that compound 13 can be taken as starting point to generate a new series of more potent RNase H selective inhibitors active against circulating drug-resistant variants.


Anti-HIV Agents/therapeutic use , HIV-1/drug effects , Ribonuclease H, Human Immunodeficiency Virus/antagonists & inhibitors , Anti-HIV Agents/pharmacology , Binding Sites , Drug Resistance, Viral , HIV-1/enzymology , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutagenesis, Site-Directed , Ribonuclease H
12.
ACS Med Chem Lett ; 11(5): 857-861, 2020 May 14.
Article En | MEDLINE | ID: mdl-32435396

Gold nanoparticles (GNPs) have been proposed as carriers for drugs to improve their intrinsic therapeutic activities and to overcome pharmacokinetic problems. In this study, novel nanosystems constituted by a model ß-diketo acid (DKA) grafted to the surface of GNPs were designed and synthesized following the "multivalent high-affinity" binding strategy. These first nanoscale DKA prototypes showed improved inhibition of HIV-1 integrase (HIV-1 IN) catalytic activities as compared with free DKA ligands.

13.
Eur J Med Chem ; 194: 112266, 2020 May 15.
Article En | MEDLINE | ID: mdl-32248006

Certain metal complexes can have a great antitumor activity, as the use of cisplatin in therapy has been demonstrating for the past fifty years. Copper complexes, in particular, have attracted much attention as an example of anticancer compounds based on an endogenous metal. In this paper we present the synthesis and the activity of a series of copper(II) complexes with variously substituted salicylaldehyde thiosemicarbazone ligands. The in vitro activity of both ligands and copper complexes was assessed on a panel of cell lines (HCT-15, LoVo and LoVo oxaliplatin resistant colon carcinoma, A375 melanoma, BxPC3 and PSN1 pancreatic adenocarcinoma, BCPAP thyroid carcinoma, 2008 ovarian carcinoma, HEK293 non-transformed embryonic kidney), highlighting remarkable activity of the metal complexes, in some cases in the low nanomolar range. The copper(II) complexes were also screened, with good results, against 3D spheroids of colon (HCT-15) and pancreatic (PSN1) cancer cells. Detailed investigations on the mechanism of action of the copper(II) complexes are also reported: they are able to potently inhibit Protein Disulfide Isomerase, a copper-binding protein, that is recently emerging as a new therapeutic target for cancer treatment. Good preliminary results obtained in C57BL mice indicate that this series of metal-based compounds could be a very promising weapon in the fight against cancer.


Antineoplastic Agents/pharmacology , Organometallic Compounds/pharmacology , Thiosemicarbazones/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Tumor Cells, Cultured
14.
Environ Sci Pollut Res Int ; 27(16): 20125-20135, 2020 Jun.
Article En | MEDLINE | ID: mdl-32239408

Nanoparticles are widely studied for applications in medical science. In recent years, they have been developed for agronomical purposes to target microbial pest such as bacteria, fungi, and viruses. Nanoparticles are also proposed to limit the use of pesticides, whose abuse is causing environmental impact and human health concerns. In this study, nanoparticles were obtained by using poly-(ε-caprolactone), a polyester chosen for its biocompatibility and biodegradability properties. Poly-(ε-caprolactone) nanoparticles were formulated by using poly(vinyl alcohol) or Pluronic® F127 as non-ionic surfactants, and then loaded with benzophenone or valerophenone thiosemicarbazone, two compounds that inhibit aflatoxin production by Aspergillus flavus. The different types of nanoparticles were compared in terms of size, polydispersity index, morphology, and drug loading capacity. Finally, their effects were investigated on growth, development, and aflatoxin production in the aflatoxigenic species Aspergillus flavus, a ubiquitous contaminant of maize, cereal crops, and derived commodities. Aflatoxin production was inhibited to various extents, but the best inhibitory effect was obtained with respect to sclerotia production that was most effectively suppressed by both benzophenone and valerophenone thiosemicarbazone-loaded nanoparticles. These data support the idea that it is possible to use such nanoparticles as an alternate to pesticides for the control of mycotoxigenic sclerotia-forming fungi.


Aflatoxins/analysis , Thiosemicarbazones , Aspergillus flavus , Crops, Agricultural , Zea mays
15.
J Agric Food Chem ; 67(39): 10947-10953, 2019 Oct 02.
Article En | MEDLINE | ID: mdl-31498626

Aflatoxins are secondary fungal metabolites that can contaminate feed and food. They are a cause of growing concern worldwide, because they are potent carcinogenic agents. Thiosemicarbazones are molecules that possess interesting antiaflatoxigenic properties, but in order to use them as crop-protective agents, their cytotoxic and genotoxic profiles must first be assessed. In this paper, a group of thiosemicarbazones and a copper complex are reported as compounds able to antagonize aflatoxin biosynthesis, fungal growth, and sclerotia biogenesis in Aspergillus flavus. The two most interesting thiosemicarbazones found were noncytotoxic on several cell lines (CRL1790, Hs27, HFL1, and U937), and therefore, they were submitted to additional analysis of mutagenicity and genotoxicity on bacteria, plants, and human cells. No mutagenic activity was observed in bacteria, whereas genotoxic activity was revealed by the Alkaline Comet Assay on U937 cells and by the test of chromosomal aberrations in Allium cepa.


Aflatoxins/metabolism , Antifungal Agents/pharmacology , Aspergillus flavus/drug effects , Crops, Agricultural/microbiology , DNA Damage/drug effects , Plant Diseases/prevention & control , Thiosemicarbazones/pharmacology , Aspergillus flavus/genetics , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Cell Line , Cell Survival/drug effects , Humans , Plant Diseases/microbiology
16.
IUCrJ ; 5(Pt 2): 223-235, 2018 Mar 01.
Article En | MEDLINE | ID: mdl-29765612

The Arenaviridae family, together with the Bunyaviridae and Orthomyxoviridae families, is one of the three negative-stranded RNA viral families that encode an endonuclease in their genome. The endonuclease domain is at the N-terminus of the L protein, a multifunctional protein that includes the RNA-dependent RNA polymerase. The synthesis of mRNA in arenaviruses is a process that is primed by capped nucleotides that are 'stolen' from the cellular mRNA by the endonuclease domain in cooperation with other domains of the L protein. This molecular mechanism has been demonstrated previously for the endonuclease of the prototype Lymphocytic choriomeningitis virus (LCMV). However, the mode of action of this enzyme is not fully understood as the original structure did not contain catalytic metal ions. The pivotal role played by the cap-snatching process in the life cycle of the virus and the highly conserved nature of the endonuclease domain make it a target of choice for the development of novel antiviral therapies. Here, the binding affinities of two diketo-acid (DKA) compounds (DPBA and L-742,001) for the endonuclease domain of LCMV were evaluated using biophysical methods. X-ray structures of the LCMV endonuclease domain with catalytic ions in complex with these two compounds were determined, and their efficacies were assessed in an in vitro endonuclease-activity assay. Based on these data and computational simulation, two new DKAs were synthesized. The LCMV endonuclease domain exhibits a good affinity for these DKAs, making them a good starting point for the design of arenavirus endonuclease inhibitors. In addition to providing the first example of an X-ray structure of an arenavirus endonuclease incorporating a ligand, this study provides a proof of concept that the design of optimized inhibitors against the arenavirus endonuclease is possible.

17.
Organometallics ; 37(6): 891-899, 2018 Mar 26.
Article En | MEDLINE | ID: mdl-29681675

We report the synthesis, characterization, and antiproliferative activity of organo-osmium(II) and organo-ruthenium(II) half-sandwich complexes [(η6-p-cym)Os(L)Cl]Cl (1 and 2) and [(η6-p-cym)Ru(L)Cl]Cl (3 and 4), where L = N-(2-hydroxy)-3-methoxybenzylidenethiosemicarbazide (L1) or N-(2,3-dihydroxybenzylidene)-3-phenylthiosemicarbazide (L2), respectively. X-ray crystallography showed that all four complexes possess half-sandwich pseudo-octahedral "three-legged piano-stool" structures, with a neutral N,S-chelating thiosemicarbazone ligand and a terminal chloride occupying three coordination positions. In methanol, E/Z isomerization of the coordinated thiosemicarbazone ligand was observed, while in an aprotic solvent like acetone, partial dissociation of the ligand occurs, reaching complete displacement in a more coordinating solvent like DMSO. In general, the complexes exhibited good activity toward A2780 ovarian, A2780Cis cisplatin-resistant ovarian, A549 lung, HCT116 colon, and PC3 prostate cancer cells. In particular, ruthenium complex 3 does not present cross-resistance with the clinical drug cisplatin in the A2780 human ovarian cancer cell line. The complexes were more active than the free thiosemicarbazone ligands, especially in A549 and HCT116 cells with potency improvements of up to 20-fold between organic ligand L1 and ruthenium complex 1.

18.
Sci Rep ; 7(1): 11214, 2017 09 11.
Article En | MEDLINE | ID: mdl-28894265

The issue of food contamination by aflatoxins presently constitutes a social emergency, since they represent a severe risk for human and animal health. On the other hand, the use of pesticides has to be contained, since this generates long term residues in food and in the environment. Here we present the synthesis of a series of chelating ligands based on the thiosemicarbazone scaffold, to be evaluated for their antifungal and antiaflatoxigenic effects. Starting from molecules of natural origin of known antifungal properties, we introduced the thio- group and then the corresponding copper complexes were synthesised. Some molecules highlighted aflatoxin inhibition in the range 67-92% at 100 µM. The most active compounds were evaluated for their cytotoxic effects on human cells. While all the copper complexes showed high cytotoxicity in the micromolar range, one of the ligand has no effect on cell proliferation. This hit was chosen for further analysis of mutagenicity and genotoxicity on bacteria, plants and human cells. Analysis of the data underlined the importance of the safety profile evaluation for hit compounds to be developed as crop-protective agents and at the same time that the thiosemicarbazone scaffold represents a good starting point for the development of aflatoxigenic inhibitors.


Aflatoxins/antagonists & inhibitors , Chelating Agents/pharmacology , Coordination Complexes/pharmacology , Copper/metabolism , Thiosemicarbazones/pharmacology , Aspergillus flavus/drug effects , Cell Line , Cell Survival/drug effects , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/toxicity , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/toxicity , Humans , Ligands , Microbial Viability/drug effects , Molecular Structure , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/toxicity , Trace Elements
19.
ACS Med Chem Lett ; 8(9): 941-946, 2017 Sep 14.
Article En | MEDLINE | ID: mdl-28947941

We report the synthesis, biological evaluation, and structural study of a series of substituted heteroaryl-pyrazole carboxylic acid derivatives. These compounds have been developed as inhibitors of specific isoforms of carbonic anhydrase (CA), with potential as prototypes of a new class of chemotherapeutics. Both X-ray crystallography and computational modeling provide insights into the CA inhibition mechanism. Results indicate that this chemotype produces an indirect interference with the zinc ion, thus behaving differently from other related nonclassical inhibitors. Among the tested compounds, 2c with Ki = 0.21 µM toward hCA XII demonstrated significant antiproliferative activity against hypoxic tumor cell lines. Taken together, the results thus provide the basis of structural determinants for the development of novel anticancer agents.

20.
Food Chem Toxicol ; 105: 498-505, 2017 Jul.
Article En | MEDLINE | ID: mdl-28483535

Aflatoxins represent a serious problem for a food economy based on cereal cultivations used to fodder animal and for human nutrition. The aims of our work are two-fold: first, to perform an evaluation of the activity of newly synthesized thiosemicarbazone compounds as antifungal and anti-mycotoxin agents and, second, to conduct studies on the toxic and genotoxic hazard potentials with a battery of tests with different endpoints. In this paper we report an initial study on two molecules: S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazone and its metal complex, bis(S-4-isopropenylcyclohexen-1-carbaldehydethiosemicarbazonato)nickel (II). The outcome of the assays on fungi growth and aflatoxin production inhibition show that both molecules possess good antifungal activities, without inducing mutagenic effects on bacteria. From the assays to ascertain that the compounds have no adverse effects on human cells, we have found that they are cytotoxic and, in the case of the nickel compound, they also present genotoxic effects.


Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Fungi/drug effects , Mycotoxins/metabolism , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Antifungal Agents/adverse effects , Cell Line , Cell Survival/drug effects , DNA Damage/drug effects , Drug Evaluation , Drug Evaluation, Preclinical , Fungi/metabolism , Humans , Microbial Sensitivity Tests , Mutagens/adverse effects , Mutagens/chemistry , Mutagens/pharmacology , Thiosemicarbazones/adverse effects
...