Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Sci Food Agric ; 99(8): 4142-4149, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30767237

ABSTRACT

BACKGROUND: 'Nules Clementine' mandarin was used to investigate the potential involvement of endogenous plant hormones in mediating citrus fruit susceptibility to rind breakdown disorder (RBD). The effect of light exposure (namely canopy position and bagging treatments) on the endogenous concentration of ABA, 7'-hydroxy-abscisic acid (7-OH-ABA), ABA-glucose ester (ABA-GE) and dihydrophaseic acid (DPA), and t-zeatin was tested using four preharvest treatments: outside, outside bagged, inside and inside bagged. Phytohormones concentration was evaluated during nine weeks of postharvest storage at 8 °C. RESULTS: The shaded fruit inside the canopy had the highest RBD score (0.88) at the end of postharvest storage, while sun-exposed fruit had the lowest score (0.12). Before storage, ABA concentration was lowest (462.8 µg kg-1 ) for inside fruit, and highest in outside bagged fruit (680.5 µg kg-1 ). Although ABA concentration suddenly increased from the third week, reaching a maximum concentration of 580 µg kg-1 at week 6 in fruit from inside position, it generally reduced 1.6-fold ranging from 240.52 to 480.65 µg kg-1 throughout storage. The increase of 7-OH-ABA was more prominent in fruit from inside canopy. Overall, the concentration of ABA-GE increased three-fold with storage time. DPA concentration of bagged fruit from inside canopy position was significantly higher compared to outside fruit. The lower ABA-GE and higher DPA concentration in inside bagged fruit throughout storage also coincided with higher RBD. CONCLUSION: The strong positive correlations between 7-OH-ABA, DPA and RBD incidence demonstrated that these ABA catabolites could be used as biomarkers for fruit susceptibility to the disorder. © 2019 Society of Chemical Industry.


Subject(s)
Abscisic Acid/metabolism , Citrus/metabolism , Cytokinins/metabolism , Fruit/growth & development , Plant Growth Regulators/metabolism , Abscisic Acid/chemistry , Citrus/growth & development , Citrus/radiation effects , Cytokinins/chemistry , Fruit/metabolism , Fruit/radiation effects , Light , Plant Growth Regulators/chemistry
2.
Food Chem ; 277: 179-185, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30502133

ABSTRACT

Withering is considered a crucial stage of black tea processing. In this study, tea shoots from two cultivars (cvs. Yabukita and Clone 2) were stored at 5 °C, in either a low or high vapour pressure deficit (VPD) environment, to determine the impact of different withering rates on physiology (viz. respiration rate [RR], colour and moisture loss) and biochemical profile (viz. individual catechins, methylxanthines) of tea shoots (Camellia sinensis). Low VPD and high VPD conditions during withering increased caffeine levels in Clone 2 and Yabukita, respectively (p < 0.05). Caffeine levels steadily increased over time in both cultivars (p < 0.05), coinciding with a rapid decline in theobromine (TB). Furthermore, stems contained lower epigallocatechin gallate (EGCG) and caffeine (ca. 75 and 56%, respectively) compared to bud and larger leaf (LL) (p < 0.05). Overall, the results of this study highlight factors such as mechanical harvesting, and hard or soft withering, which could affect final tea beverage quality.


Subject(s)
Camellia sinensis/chemistry , Camellia sinensis/metabolism , Cold Temperature , Food Storage/methods , Plant Leaves/metabolism , Vapor Pressure , Caffeine/metabolism , Catechin/analogs & derivatives , Catechin/metabolism , Theobromine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL