Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microorganisms ; 12(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543587

ABSTRACT

The catabolic activity of the ruminal microbial community of cattle enables the conversion of low-quality feedstuffs into meat and milk. The rate at which this conversion occurs is termed feed efficiency, which is of crucial importance given that feed expenses account for up to 70% of the cost of animal production. The present study assessed the relationship between cattle feed efficiency and the composition of their ruminal microbial communities during the feedlot finishing period. Angus steers (n = 65) were fed a feedlot finishing diet for 82 days and their growth performance metrics were evaluated. These included the dry matter intake (DMI), average daily gain (ADG), and residual feed intake (RFI). Steers were rank-ordered based upon their RFI, and the five lowest RFI (most efficient) and five highest RFI (least efficient) steers were selected for evaluations. Ruminal fluid samples were collected on days 0 and 82 of the finishing period. Volatile fatty acids (VFA) were quantified, and microbial DNA was extracted and the 16S rRNA gene was sequenced. The results showed that the ADG was not different (p = 0.82) between efficiency groups during the 82-day feedlot period; however, the efficient steers had lower (p = 0.03) DMI and RFI (p = 0.003). Less-efficient (high RFI) steers developed higher (p = 0.01) ruminal Methanobrevibacter relative abundances (p = 0.01) and tended (p = 0.09) to have more Methanosphaera. In high-efficiency steers (low RFI), the relative abundances of Ruminococcaceae increased (p = 0.04) over the 82-day period. The molar proportions of VFA were not different between the two efficiency groups, but some changes in the concentration of specific VFA were observed over time. The results indicated that the ruminal microbial populations of the less-efficient steers contained a greater relative abundance of methanogens compared to the high-efficiency steers during the feedlot phase, likely resulting in more energetic waste in the form or methane and less dietary energy being harvested by the less-efficient animals.

2.
J Anim Sci ; 98(7)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32687166

ABSTRACT

Feed is the greatest cost of animal production, so reducing it is critical to increase producer profits. In ruminants, the microbial population within the gastrointestinal tract (GIT) is critical to nutrient digestion and absorption in both the rumen and the hindgut. The objective of this study was to determine the bacterial taxonomic profile of the rumen, cecum, and feces of feedlot steers at slaughter in order to link feed efficiency and the GIT bacterial populations from these three locations. Twenty commercial Angus steers were selected and divided into two groups according to their residual feed intake (RFI) classification determined during the feedlot-finishing period: high-RFI (n = 10) and low-RFI (n = 10). After the ruminal, cecal, and fecal samples were collected at slaughter, DNA extraction and 16S rRNA gene sequencing were performed on them to determine their bacterial composition. One-way ANOVA was performed on the animal performance data, alpha diversities, and bacterial abundances using RFI classification as the fixed effect. Overall, the ruminal bacterial population was the most different in terms of taxonomic profile compared with the cecal and fecal populations as revealed by beta diversity analysis (P < 0.001). Moreover, bacterial richness (Chao1) was greatest (P = 0.01) in the rumen of the high-RFI group compared with the low-RFI group. In contrast, bacterial richness and diversity in the intestinal environment showed that Chao1 was greater (P = 0.01) in the cecum, and the Shannon diversity index was greater in both the cecum and feces of low-RFI compared with high-RFI steers (P = 0.01 and P < 0.001, respectively). Ruminococcaceae was more abundant in the low-RFI group in the cecum and feces (P = 0.01); fecal Bifidobacteriaceae was more abundant in high-RFI steers (P = 0.03). No correlations (P ≥ 0.13) between any ruminal bacterial family and RFI were detected; however, Ruminococcaceae, Mogibacteriaceae, Christensenellaceae, and BS11 were negatively correlated with RFI (P < 0.05) in the cecum and feces. Succinivibrionaceae in the cecum was positively correlated with RFI (P = 0.05), and fecal Bifidobacteriaceae was positively correlated with RFI (P = 0.03). Results collectively indicate that in addition to the ruminal bacteria, the lower gut bacterial population has a significant impact on feed efficiency and nutrient utilization in feedlot steers; therefore, the intestinal bacteria should also be considered when examining the basis of ruminant feed efficiency.


Subject(s)
Animal Feed/analysis , Cattle/physiology , Cecum/microbiology , Diet/veterinary , Feces/microbiology , Rumen/microbiology , Animal Nutritional Physiological Phenomena , Animals , Bacteria/classification , Gastrointestinal Tract , Male , Microbiota , RNA, Ribosomal, 16S
SELECTION OF CITATIONS
SEARCH DETAIL