Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
iScience ; 27(8): 110500, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39171293

ABSTRACT

Triple-negative breast cancer (TNBC) is characterized by lack of the estrogen (ER) receptor, progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), and standard receptor-targeted therapies are ineffective. FOXC1, a transcription factor aberrantly overexpressed in many cancers, drives growth, metastasis, and stem-cell-like properties in TNBC. However, the molecular function of FOXC1 is unknown, partly due to heterogeneity of TNBC. Here, we show that although FOXC1 regulates many cancer hallmarks in TNBC, its function is varied in different cell lines, highlighted by the differential response to CDK4/6 inhibitors upon FOXC1 loss. Despite this functional heterogeneity, we show that FOXC1 regulates key oncogenes and tumor suppressors and identify a set of core FOXC1 peaks conserved across TNBC cell lines. We identify the ER-associated and drug-targetable nuclear receptor NR2F2 as a cofactor of FOXC1. Finally, we show that core FOXC1 targets in TNBC are regulated in parallel by the pioneer factor FOXA1 and the nuclear receptor NR2F2 in ER + breast cancer.

2.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005294

ABSTRACT

Endocrine therapies targeting the estrogen receptor (ER/ESR1) are the cornerstone to treat ER-positive breast cancers patients, but resistance often limits their effectiveness. Understanding the molecular mechanisms is thus key to optimize the existing drugs and to develop new ER-modulators. Notable progress has been made although the fragmented way data is reported has reduced their potential impact. Here, we introduce EstroGene2.0, an expanded database of its precursor 1.0 version. EstroGene2.0 focusses on response and resistance to endocrine therapies in breast cancer models. Incorporating multi-omic profiling of 361 experiments from 212 studies across 28 cell lines, a user-friendly browser offers comprehensive data visualization and metadata mining capabilities (https://estrogeneii.web.app/). Taking advantage of the harmonized data collection, our follow-up meta-analysis revealed substantial diversity in response to different classes of ER-modulators including SERMs, SERDs, SERCA and LDD/PROTAC. Notably, endocrine resistant models exhibit a spectrum of transcriptomic alterations including a contra-directional shift in ER and interferon signaling, which is recapitulated clinically. Furthermore, dissecting multiple ESR1-mutant cell models revealed the different clinical relevance of genome-edited versus ectopic overexpression model engineering and identified high-confidence mutant-ER targets, such as NPY1R. These examples demonstrate how EstroGene2.0 helps investigate breast cancer's response to endocrine therapies and explore resistance mechanisms.

3.
Chem Commun (Camb) ; 60(55): 7025-7028, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38888299

ABSTRACT

We describe a versatile and tuneable thiol responsive linker system using thiovinylketones, which relies on the conjugate addition-elimination mechanism of Michael acceptors for the traceless release of therapeutics. In a proof-of-principle study, we translate our findings to exhibit potent thiol-cleavable antibiotic prodrugs and antibody-drug conjugates.


Subject(s)
Drug Liberation , Immunoconjugates , Prodrugs , Sulfhydryl Compounds , Prodrugs/chemistry , Sulfhydryl Compounds/chemistry , Humans , Immunoconjugates/chemistry , Anti-Bacterial Agents/chemistry , Molecular Structure , Ketones/chemistry
5.
ChemMedChem ; 19(16): e202400269, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38724444

ABSTRACT

Targeting the protein arginine methyltransferase 1 (PRMT1) has emerged as a promising therapeutic strategy in cancer treatment. The phase 1 clinical trial for GSK3368715, the first PRMT1 inhibitor to enter the clinic, was terminated early due to a lack of clinical efficacy, extensive treatment-emergent effects, and dose-limiting toxicities. The incidence of the latter two events may be associated with inhibition-driven pharmacology as a high and sustained concentration of inhibitor is required for therapeutic effect. The degradation of PRMT1 using a proteolysis targeting chimera (PROTAC) may be superior to inhibition as proceeds via event-driven pharmacology where a PROTAC acts catalytically at a low dose. PROTACs containing the same pharmacophore as GSK3368715, combined with a motif that recruits the VHL or CRBN E3-ligase, were synthesised. Suitable cell permeability and target engagement were shown for selected candidates by the detection of downstream effects of PRMT1 inhibition and by a NanoBRET assay for E3-ligase binding, however the candidates did not induce PRMT1 degradation. This paper is the first reported investigation of PRMT1 for targeted protein degradation and provides hypotheses and insights to assist the design of PROTACs for PRMT1 and other novel target proteins.


Subject(s)
Protein-Arginine N-Methyltransferases , Proteolysis , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Humans , Proteolysis/drug effects , Repressor Proteins/metabolism , Repressor Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors
6.
Genome Biol ; 25(1): 44, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317241

ABSTRACT

BACKGROUND: The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease. RESULTS: The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer. CONCLUSIONS: AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.


Subject(s)
Breast Neoplasms , GATA3 Transcription Factor , Receptors, Androgen , Female , Humans , Breast Neoplasms/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Phenotype , Proteomics , Receptors, Androgen/genetics
7.
Ultrasonics ; 138: 107236, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183759

ABSTRACT

Fatigue properties of polyetheretherketone (PEEK) and multiwall carbon nanotube (CNT) reinforced PEEK were investigated with the ultrasonic fatigue testing method. Lifetimes were measured in the high and very high cycle fatigue regime at resonance frequency 19 kHz and load ratio R = -1. Pulse-pause loading served to avoid specimen self-heating and led to effective cycling frequencies in the range from several hundred Hz to about two kHz. Stress amplitude for 50 % fracture probability at 109 cycles is 21.2 ± 4.3 MPa for unreinforced PEEK (22 % of its tensile strength) and 33.5 ± 3.5 MPa for CNT reinforced PEEK (33 % of its tensile strength). Servohydraulic fatigue tests at 22 Hz with CNT reinforced PEEK delivered fatigue lifetimes comparable to ultrasonic tests, i.e. no frequency effect and no influence of load versus displacement control was observed. Keeping specimen temperature far below the glass transition temperature, ultrasonic fatigue testing of a high temperature resistant plastic was successfully implemented.

8.
Dev Cell ; 58(19): 1967-1982.e8, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37734383

ABSTRACT

Neuroblastoma is the most common extracranial solid tumor in infants, arising from developmentally stalled neural crest-derived cells. Driving tumor differentiation is a promising therapeutic approach for this devastating disease. Here, we show that the CDK4/6 inhibitor palbociclib not only inhibits proliferation but induces extensive neuronal differentiation of adrenergic neuroblastoma cells. Palbociclib-mediated differentiation is manifested by extensive phenotypic and transcriptional changes accompanied by the establishment of an epigenetic program driving expression of mature neuronal features. In vivo palbociclib significantly inhibits tumor growth in mouse neuroblastoma models. Furthermore, dual treatment with retinoic acid resets the oncogenic adrenergic core regulatory circuit of neuroblastoma cells, further suppresses proliferation, and can enhance differentiation, altering gene expression in ways that significantly correlate with improved patient survival. We therefore identify palbociclib as a therapeutic approach to dramatically enhance neuroblastoma differentiation efficacy that could be used in combination with retinoic acid to improve patient outcomes.


Subject(s)
Neuroblastoma , Piperazines , Pyridines , Tretinoin , Animals , Mice , Humans , Cell Line, Tumor , Cell Differentiation , Tretinoin/pharmacology , Neuroblastoma/drug therapy , Adrenergic Agents/therapeutic use
10.
Cell Rep ; 42(7): 112751, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37405921

ABSTRACT

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a cancer syndrome caused by inactivating germline mutations in fumarate hydratase (FH) and subsequent accumulation of fumarate. Fumarate accumulation leads to profound epigenetic changes and the activation of an anti-oxidant response via nuclear translocation of the transcription factor NRF2. The extent to which chromatin remodeling shapes this anti-oxidant response is currently unknown. Here, we explored the effects of FH loss on the chromatin landscape to identify transcription factor networks involved in the remodeled chromatin landscape of FH-deficient cells. We identify FOXA2 as a key transcription factor that regulates anti-oxidant response genes and subsequent metabolic rewiring cooperating without direct interaction with the anti-oxidant regulator NRF2. The identification of FOXA2 as an anti-oxidant regulator provides additional insights into the molecular mechanisms behind cell responses to fumarate accumulation and potentially provides further avenues for therapeutic intervention for HLRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Leiomyomatosis , Neoplastic Syndromes, Hereditary , Skin Neoplasms , Uterine Neoplasms , Female , Humans , Fumarate Hydratase/genetics , Antioxidants , NF-E2-Related Factor 2/genetics , Leiomyomatosis/genetics , Uterine Neoplasms/genetics , Skin Neoplasms/genetics , Neoplastic Syndromes, Hereditary/genetics , Chromatin , Kidney Neoplasms/genetics , Carcinoma, Renal Cell/genetics , Hepatocyte Nuclear Factor 3-beta/genetics
11.
Cancer Res ; 83(16): 2656-2674, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37272757

ABSTRACT

As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied over the past few decades. Sequencing technological advances have enabled genome-wide analysis of ER action. However, comparison of individual studies is limited by different experimental designs, and few meta-analyses are available. Here, we established the EstroGene database through unified processing of data from 246 experiments including 136 transcriptomic, cistromic, and epigenetic datasets focusing on estradiol (E2)-triggered ER activation across 19 breast cancer cell lines. A user-friendly browser (https://estrogene.org/) was generated for multiomic data visualization involving gene inquiry under user-defined experimental conditions and statistical thresholds. Notably, annotation of metadata associated with public datasets revealed a considerable lack of experimental details. Comparison of independent RNA-seq or ER ChIP-seq data with the same design showed large variability and only strong effects could be consistently detected. Temporal estrogen response metasignatures were defined, and the association of E2 response rate with temporal transcriptional factors, chromatin accessibility, and heterogeneity of ER expression was evaluated. Unexpectedly, harmonizing 146 E2-induced transcriptomic datasets uncovered a subset of genes harboring bidirectional E2 regulation, which was linked to unique transcriptional factors and highly associated with immune surveillance in the clinical setting. Furthermore, the context dependent E2 response programs were characterized in MCF7 and T47D cell lines, the two most frequently used models in the EstroGene database. Collectively, the EstroGene database provides an informative and practical resource to the cancer research community to uniformly evaluate key reproducible features of ER regulomes and unravels modes of ER signaling. SIGNIFICANCE: A resource database integrating 246 publicly available ER profiling datasets facilitates meta-analyses and identifies estrogen response temporal signatures, a bidirectional program, and model-specific biases.


Subject(s)
Breast Neoplasms , Gene Expression Regulation, Neoplastic , Receptors, Estrogen , Female , Humans , Breast Neoplasms/metabolism , Cell Line, Tumor , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Databases, Genetic
12.
Mol Cancer Res ; 21(6): 591-604, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36930833

ABSTRACT

Estrogen receptor alpha (ER/ESR1) mutations occur in 30% to 40% of endocrine resistant ER-positive (ER+) breast cancer. Forkhead box A1 (FOXA1) is a key pioneer factor mediating ER-chromatin interactions and endocrine response in ER+ breast cancer, but its role in ESR1-mutant breast cancer remains unclear. Our previous FOXA1 chromatin immunoprecipitation sequencing (ChIP-seq) identified a large portion of redistributed binding sites in T47D genome-edited Y537S and D538G ESR1-mutant cells. Here, we further integrated FOXA1 genomic binding profile with the isogenic ER cistrome, accessible genome, and transcriptome data of T47D cell model. FOXA1 redistribution was significantly associated with transcriptomic alterations caused by ESR1 mutations. Furthermore, in ESR1-mutant cells, FOXA1-binding sites less frequently overlapped with ER, and differential gene expression was less associated with the canonical FOXA1-ER axis. Motif analysis revealed a unique enrichment of retinoid X receptor (RXR) motifs in FOXA1-binding sites of ESR1-mutant cells. Consistently, ESR1-mutant cells were more sensitive to growth stimulation with the RXR agonist LG268. The mutant-specific response was dependent on two RXR isoforms, RXR-α and RXR-ß, with a stronger dependency on the latter. In addition, T3, the agonist of thyroid receptor (TR) also showed a similar growth-promoting effect in ESR1-mutant cells. Importantly, RXR antagonist HX531 blocked growth of ESR1-mutant cells and a patient-derived xenograft (PDX)-derived organoid with an ESR1 D538G mutation. Collectively, our data support the evidence for a stronger RXR response associated with FOXA1 reprograming in ESR1-mutant cells, suggesting development of therapeutic strategies targeting RXR pathways in breast tumors with ESR1 mutation. IMPLICATIONS: It provides comprehensive characterization of the role of FOXA1 in ESR1-mutant breast cancer and potential therapeutic strategy through blocking RXR activation.


Subject(s)
Breast Neoplasms , Estrogen Receptor alpha , Hepatocyte Nuclear Factor 3-alpha , Female , Humans , Breast Neoplasms/pathology , Chromatin , Estrogen Receptor alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Mutation , Retinoid X Receptors/genetics , Transcriptome
13.
Chem Commun (Camb) ; 59(13): 1841-1844, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36722863

ABSTRACT

Antibody-drug conjugates containing peroxide-cleavable arylboronic acid linkers are described, which target the high levels of reactive oxygen species (ROS) in cancer. The arylboronic acid linkers rapidly release a payload in the presence of hydrogen peroxide, but remain stable in plasma. Anti-HER2 and PD-L1 peroxide-cleavable ADCs exhibited potent cytotoxicity in vitro.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunoconjugates/pharmacology , Peroxides , Antineoplastic Agents/pharmacology , Hydrogen Peroxide , Acids
14.
bioRxiv ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36778377

ABSTRACT

As one of the most successful cancer therapeutic targets, estrogen receptor-α (ER/ESR1) has been extensively studied in decade-long. Sequencing technological advances have enabled genome-wide analysis of ER action. However, reproducibility is limited by different experimental design. Here, we established the EstroGene database through centralizing 246 experiments from 136 transcriptomic, cistromic and epigenetic datasets focusing on estradiol-treated ER activation across 19 breast cancer cell lines. We generated a user-friendly browser ( https://estrogene.org/ ) for data visualization and gene inquiry under user-defined experimental conditions and statistical thresholds. Notably, documentation-based meta-analysis revealed a considerable lack of experimental details. Comparison of independent RNA-seq or ER ChIP-seq data with the same design showed large variability and only strong effects could be consistently detected. We defined temporal estrogen response metasignatures and showed the association with specific transcriptional factors, chromatin accessibility and ER heterogeneity. Unexpectedly, harmonizing 146 transcriptomic analyses uncovered a subset of E2-bidirectionally regulated genes, which linked to immune surveillance in the clinical setting. Furthermore, we defined context dependent E2 response programs in MCF7 and T47D cell lines, the two most frequently used models in the field. Collectively, the EstroGene database provides an informative resource to the cancer research community and reveals a diverse mode of ER signaling.

15.
Oncogene ; 41(50): 5347-5360, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36344675

ABSTRACT

ARID1a (BAF250), a component of human SWI/SNF chromatin remodeling complexes, is frequently mutated across numerous cancers, and its loss of function has been putatively linked to glucocorticoid resistance. Here, we interrogate the impact of siRNA knockdown of ARID1a compared to a functional interference approach in the HeLa human cervical cancer cell line. We report that ARID1a knockdown resulted in a significant global decrease in chromatin accessibility in ATAC-Seq analysis, as well as affecting a subset of genome-wide GR binding sites determined by analyzing GR ChIP-Seq data. Interestingly, the specific effects on gene expression were limited to a relatively small subset of glucocorticoid-regulated genes, notably those involved in cell cycle regulation and DNA repair. The vast majority of glucocorticoid-regulated genes were largely unaffected by ARID1a knockdown or functional interference, consistent with a more specific role for ARID1a in glucocorticoid function than previously speculated. Using liquid chromatography-mass spectrometry, we have identified a chromatin-associated protein complex comprising GR, ARID1a, and several DNA damage repair proteins including P53 binding protein 1 (P53BP1), Poly(ADP-Ribose) Polymerase 1 (PARP1), DNA damage-binding protein 1 (DDB1), DNA mismatch repair protein MSH6 and splicing factor proline and glutamine-rich protein (SFPQ), as well as the histone acetyltransferase KAT7, an epigenetic regulator of steroid-dependent transcription, DNA damage repair and cell cycle regulation. Not only was this protein complex ablated with both ARID1a knockdown and functional interference, but spontaneously arising DNA damage was also found to accumulate in a manner consistent with impaired DNA damage repair mechanisms. Recovery from dexamethasone-dependent cell cycle arrest was also significantly impaired. Taken together, our data demonstrate that although glucocorticoids can still promote cell cycle arrest in the absence of ARID1a, the purpose of this arrest to allow time for DNA damage repair is hindered.


Subject(s)
DNA Repair , Nuclear Proteins , Receptors, Glucocorticoid , Tumor Suppressor p53-Binding Protein 1 , Humans , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Chromatin/genetics , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Histone Acetyltransferases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/genetics , Receptors, Glucocorticoid/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism
16.
Front Cell Dev Biol ; 10: 942579, 2022.
Article in English | MEDLINE | ID: mdl-36263020

ABSTRACT

Neuroblastoma is believed to arise from sympathetic neuroblast precursors that fail to engage the neuronal differentiation programme, but instead become locked in a pro-proliferative developmental state. Achaete-scute homolog 1 (ASCL1) is a proneural master regulator of transcription which modulates both proliferation and differentiation of sympathetic neuroblast precursor cells during development, while its expression has been implicated in the maintenance of an oncogenic programme in MYCN-amplified neuroblastoma. However, the role of ASCL1 expression in neuroblastoma is not clear, especially as its levels vary considerably in different neuroblastoma cell lines. Here, we have investigated the role of ASCL1 in maintaining proliferation and controlling differentiation in both MYCN amplified and Anaplastic Lymphoma Kinase (ALK)-driven neuroblastoma cells. Using CRISPR deletion, we generated neuroblastoma cell lines lacking ASCL1 expression, and these grew more slowly than parental cells, indicating that ASCL1 contributes to rapid proliferation of MYCN amplified and non-amplified neuroblastoma cells. Genome-wide analysis after ASCL1 deletion revealed reduced expression of genes associated with neuronal differentiation, while chromatin accessibility at regulatory regions associated with differentiation genes was also attenuated by ASCL1 knock-out. In neuroblastoma, ASCL1 has been described as part of a core regulatory circuit of developmental regulators whose high expression is maintained by mutual cross-activation of a network of super enhancers and is further augmented by the activity of MYC/MYCN. Surprisingly, ASCL1 deletion had little effect on the transcription of CRC gene transcripts in these neuroblastoma cell lines, but the ability of MYC/MYCN and CRC component proteins, PHOX2B and GATA3, to bind to chromatin was compromised. Taken together, our results demonstrate several roles for endogenous ASCL1 in neuroblastoma cells: maintaining a highly proliferative phenotype, regulating DNA binding of the core regulatory circuit genes to chromatin, while also controlling accessibility and transcription of differentiation targets. Thus, we propose a model where ASCL1, a key developmental regulator of sympathetic neurogenesis, plays a pivotal role in maintaining proliferation while simultaneously priming cells for differentiation in neuroblastoma.

17.
Article in English | MEDLINE | ID: mdl-36041880

ABSTRACT

Breast cancer presents as multiple distinct disease entities. Each tumor harbors diverse cell populations defining a phenotypic heterogeneity that impinges on our ability to treat patients. To date, efforts mainly focused on genetic variants to find drivers of inter- and intratumor phenotypic heterogeneity. However, these efforts have failed to fully capture the genetic basis of breast cancer. Through recent technological and analytical approaches, the genetic basis of phenotypes can now be decoded by characterizing chromatin variants. These variants correspond to polymorphisms in chromatin states at DNA sequences that serve a distinct role across cell populations. Here, we review the function and causes of chromatin variants as they relate to breast cancer inter- and intratumor heterogeneity and how they can guide the development of treatment alternatives to fulfill the goal of precision cancer medicine.


Subject(s)
Chromatin , Neoplasms , Carcinogenesis , Cell Transformation, Neoplastic , Chromatin/genetics , Genetic Heterogeneity , Humans , Precision Medicine
18.
Chem Commun (Camb) ; 58(67): 9401-9404, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35912884

ABSTRACT

Herein we report the development of a methodology for the dual-functionalisation of IgG antibodies. This is accomplished through the combination of disulfide rebridging divinylpyrimidine technology, with bicyclononyne and methylcyclopropene handles to facilitate sequential SPAAC and IEDDA reactions. Advantageously, the strategy does not require metal catalysis and avoids the need for purification between functionalisation steps.


Subject(s)
Disulfides , Immunoglobulin G , Catalysis
19.
Chem Sci ; 13(30): 8781-8790, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35975158

ABSTRACT

Antibody-drug conjugates (ADCs) are valuable therapeutic entities which leverage the specificity of antibodies to selectively deliver cytotoxins to antigen-expressing targets such as cancer cells. However, current methods for their construction still suffer from a number of shortcomings. For instance, using a single modification technology to modulate the drug-to-antibody ratio (DAR) in integer increments while maintaining homogeneity and stability remains exceptionally challenging. Herein, we report a novel method for the generation of antibody conjugates with modular cargo loading from native antibodies. Our approach relies on a new class of disulfide rebridging linkers, which can react with eight cysteine residues, thereby effecting all-in-one bridging of all four interchain disulfides in an IgG1 antibody with a single linker molecule. Modification of the antibody with the linker in a 1 : 1 ratio enabled the modulation of cargo loading in a quick and selective manner through derivatization of the linker with varying numbers of payload attachment handles to allow for attachment of either 1, 2, 3 or 4 payloads (fluorescent dyes or cytotoxins). Assessment of the biological activity of these conjugates demonstrated their exceptional stability in human plasma and utility for cell-selective cytotoxin delivery or imaging/diagnostic applications.

20.
Heliyon ; 8(7): e09898, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35815154

ABSTRACT

This study examines associations between media use and mental health for adolescents prior to and during the COVID-19 pandemic. Using two separate datasets that sampled adolescents (8th, 10th, and 12th graders) in 2018 (n = 31,825) and 2020 (n = 1,523), mental health (hopelessness and happiness), media use (time spent using a variety of media), and personal health habits (sleep) were assessed. Overall, we found that there were significant differences by year in adolescent hopelessness, with adolescents reporting less hopelessness in 2020 (during COVID-19) than in 2018 (pre COVID-19). There were not â€‹practical significant differences in adolescent happiness and loneliness. Adolescents also reported getting more sleep in our 2020 sample than the 2018 sample. Adolescents in 2020 spent significantly more time watching movies and video chatting, but less time texting and on social media than adolescents in 2018. Finally, we found that time spent video chatting and sleep had a different relationship with various aspects of mental health (happiness, hopelessness, or loneliness) in 2018 vs. 2020.

SELECTION OF CITATIONS
SEARCH DETAIL