Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
J Infect Dis ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976510

ABSTRACT

The current study aimed to investigate determinants of severity in a previously healthy patient who experienced two life-threatening infections, from West Nile Virus and SARS-CoV2. During COVID19 hospitalization he was diagnosed with a thymoma, retrospectively identified as already present at the time of WNV infection. Heterozygosity for p.Pro554Ser in the TLR3 gene, which increases susceptibility to severe COVID-19, and homozygosity for CCR5 c.554_585del, associated to severe WNV infection, were found. Neutralizing anti-IFN-α and anti-IFN-ω auto-antibodies were detected, likely induced by the underlying thymoma and increasing susceptibility to both severe COVID-19 pneumonia and West Nile encephalitis.

3.
PLoS One ; 18(8): e0288336, 2023.
Article in English | MEDLINE | ID: mdl-37540677

ABSTRACT

Almost 40% of infertile men cases are classified as idiopathic when tested negative to the current diagnostic routine based on the screening of karyotype, Y chromosome microdeletions and CFTR mutations in men with azoospermia or oligozoospermia. Rare monogenic forms of infertility are not routinely evaluated. In this study we aim to investigate the unknown potential genetic causes in couples with pure male idiopathic infertility by applying variant prioritization to whole exome sequencing (WES) in a cohort of 99 idiopathic Italian patients. The ad-hoc manually curated gene library prioritizes genes already known to be associated with more common and rare syndromic and non-syndromic male infertility forms. Twelve monogenic cases (12.1%) were identified in the whole cohort of patients. Of these, three patients had variants related to mild androgen insensitivity syndrome, two in genes related to hypogonadotropic hypogonadism, and six in genes related to spermatogenic failure, while one patient is mutant in PKD1. These results suggest that NGS combined with our manually curated pipeline for variant prioritization and classification can uncover a considerable number of Mendelian causes of infertility even in a small cohort of patients.


Subject(s)
Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Exome/genetics , Infertility, Male/genetics , Infertility, Male/diagnosis , Azoospermia/genetics , Oligospermia/diagnosis , Mutation
4.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37301203

ABSTRACT

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Subject(s)
Cerebellar Ataxia , Spinocerebellar Ataxias , Humans , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/diagnosis , Cerebellar Ataxia/genetics , Phenotype , Ataxia/genetics , Genetic Testing , ATPases Associated with Diverse Cellular Activities/genetics , ATP-Dependent Proteases/genetics , Ubiquitin-Protein Ligases/genetics
5.
Genome Med ; 15(1): 22, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37020259

ABSTRACT

BACKGROUND: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. METHODS: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. RESULTS: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P = 1.1 × 10-4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3-8.2], P = 2.1 × 10-4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1-2635.4], P = 3.4 × 10-3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3-8.4], P = 7.7 × 10-8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10-5). CONCLUSIONS: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.


Subject(s)
COVID-19 , Interferon Type I , Humans , Young Adult , Adult , Middle Aged , SARS-CoV-2 , Toll-Like Receptor 3/genetics , Toll-Like Receptor 7 , Autoantibodies
6.
JACC Clin Electrophysiol ; 9(7 Pt 1): 951-961, 2023 07.
Article in English | MEDLINE | ID: mdl-36752457

ABSTRACT

BACKGROUND: Predictors of major adverse cardiovascular events (MACE) in patients with undefined left ventricular arrhythmogenic cardiomyopathy (ULVACM) have not been described. OBJECTIVES: The purpose of this study was to investigate the prognostic value of genetic testing and histology in a cohort of ULVACM patients. METHODS: We identified 313 patients with ULVACM defined by new-onset ventricular arrhythmia (VA), nonischemic pattern of late gadolinium enhancement limited to the left ventricle (LV), and no severe dilated cardiomyopathy (LV ejection fraction ≥40%) from a retrospective multicenter registry. Patients undergoing next generation sequencing (NGS) for cardiomyopathy genes and endomyocardial biopsy (EMB) were compared with subjects without these studies. The primary endpoint was the occurrence of MACE, defined as the composite of cardiac death, heart transplantation, and malignant VA (ventricular tachycardia, ventricular fibrillation, appropriate implantable cardioverter-defibrillator treatment), at 60 months after clinical presentation. RESULTS: Of the whole cohort (age 46 ± 14 years, 63% men, LV ejection fraction 55% ± 7%), 160 (51%) and 198 patients (63%), respectively, underwent NGS and EMB. NGS identified pathogenic or likely-pathogenic cardiomyopathy variants (pathogenic variants/likely pathogenic variants) in 25 of 160 cases (16%). EMB showed active myocardial inflammation (AM) in 102 of 198 patients (52%), 47 of whom (46%) received immunosuppressive therapy. After 58-month median follow-up, 93 of 313 patients (30%) experienced MACE. On multivariable analysis, presentation with malignant VA and EMB-proven AM were positively associated with the primary endpoint (HR: 2.8; 95% CI: 1.4-5.5; P = 0.003; and HR: 3.9; 95% CI: 1.9-7.5; P < 0.001, respectively), whereas immunosuppressive therapy showed a reverse association with MACE at 60 months (HR: 0.10; 95% CI: 0.05-0.40; P < 0.001). CONCLUSIONS: Presentation with malignant VA or AM associates with MACE in ULVACM patients.


Subject(s)
Contrast Media , Heart Ventricles , Male , Humans , Adult , Middle Aged , Female , Gadolinium , Arrhythmias, Cardiac/epidemiology , Inflammation , Biopsy
7.
medRxiv ; 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36324795

ABSTRACT

Background: We previously reported inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity in 1-5% of unvaccinated patients with life-threatening COVID-19, and auto-antibodies against type I IFN in another 15-20% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3,269 unvaccinated patients with life-threatening COVID-19 (1,301 previously reported and 1,968 new patients), and 1,373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. A quarter of the patients tested had antibodies against type I IFN (234 of 928) and were excluded from the analysis. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7 , with an OR of 27.68 (95%CI:1.5-528.7, P= 1.1×10 -4 ), in analyses restricted to biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70 [95%CI:1.3-8.2], P= 2.1×10 -4 ). Adding the recently reported TYK2 COVID-19 locus strengthened this enrichment, particularly under a recessive model (OR=19.65 [95%CI:2.1-2635.4]; P= 3.4×10 -3 ). When these 14 loci and TLR7 were considered, all individuals hemizygous ( n =20) or homozygous ( n =5) for pLOF or bLOF variants were patients (OR=39.19 [95%CI:5.2-5037.0], P =4.7×10 -7 ), who also showed an enrichment in heterozygous variants (OR=2.36 [95%CI:1.0-5.9], P =0.02). Finally, the patients with pLOF or bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P= 1.68×10 -5 ). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old.

9.
Genes (Basel) ; 12(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34946927

ABSTRACT

Homozygous deletions (HDs) may be the cause of rare diseases and cancer, and their discovery in targeted sequencing is a challenging task. Different tools have been developed to disentangle HD discovery but a sensitive caller is still lacking. We present VarGenius-HZD, a sensitive and scalable algorithm that leverages breadth-of-coverage for the detection of rare homozygous and hemizygous single-exon deletions (HDs). To assess its effectiveness, we detected both real and synthetic rare HDs in fifty exomes from the 1000 Genomes Project obtaining higher sensitivity in comparison with state-of-the-art algorithms that each missed at least one event. We then applied our tool on targeted sequencing data from patients with Inherited Retinal Dystrophies and solved five cases that still lacked a genetic diagnosis. We provide VarGenius-HZD either stand-alone or integrated within our recently developed software, enabling the automated selection of samples using the internal database. Hence, it could be extremely useful for both diagnostic and research purposes.


Subject(s)
DNA Copy Number Variations/genetics , Sequence Analysis, DNA/methods , Sequence Deletion/genetics , Algorithms , Animals , Base Sequence/genetics , Exome/genetics , Exons/genetics , High-Throughput Nucleotide Sequencing/methods , Humans
10.
Sci Immunol ; 6(62)2021 08 19.
Article in English | MEDLINE | ID: mdl-34413140

ABSTRACT

Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.


Subject(s)
COVID-19/complications , Genetic Diseases, X-Linked/complications , Immune System Diseases/complications , Toll-Like Receptor 7/deficiency , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Child , Child, Preschool , Humans , Infant , Male , Middle Aged , Pedigree , Penetrance , Toll-Like Receptor 7/genetics , Young Adult
11.
Neurobiol Dis ; 156: 105419, 2021 08.
Article in English | MEDLINE | ID: mdl-34111520

ABSTRACT

Migraine is a common but poorly understood sensory circuit disorder. Mouse models of familial hemiplegic migraine (FHM, a rare monogenic form of migraine with aura) show increased susceptibility to cortical spreading depression (CSD, the phenomenon that underlies migraine aura and can activate migraine headache mechanisms), allowing an opportunity to investigate the mechanisms of CSD and migraine onset. In FHM type 2 (FHM2) knock-in mice with reduced expression of astrocytic Na+, K+-ATPases, the reduced rate of glutamate uptake into astrocytes can account for the facilitation of CSD initiation. Here, we investigated the underlying mechanisms and show that the reduced rate of glutamate clearance in FHM2 mice results in increased amplitude and slowing of rise time and decay of the NMDA receptor (NMDAR) excitatory postsynaptic current (EPSC) elicited in layer 2/3 pyramidal cells by stimulation of neuronal afferents in somatosensory cortex slices. The relative increase in NMDAR activation in FHM2 mice is activity-dependent, being larger after high-frequency compared to low-frequency afferent activity. Inhibition of GluN1-N2B NMDARs, which hardly affected the NMDAR EPSC in wild-type mice, rescued the increased and prolonged activation of NMDARs as well as the facilitation of CSD induction and propagation in FHM2 mice. Our data suggest that the enhanced susceptibility to CSD in FHM2 is mainly due to specific activation of extrasynaptic GluN1-N2B NMDARs and point to these receptors as possible therapeutic targets for prevention of CSD and migraine.


Subject(s)
Astrocytes/metabolism , Cortical Spreading Depression/physiology , Glutamic Acid/metabolism , Migraine Disorders/metabolism , Nerve Tissue Proteins/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Extracellular Space/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Migraine Disorders/genetics , Nerve Tissue Proteins/genetics , Organ Culture Techniques , Receptors, N-Methyl-D-Aspartate/genetics , Somatosensory Cortex/metabolism
12.
Int J Mol Sci ; 22(9)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946750

ABSTRACT

Genetic testing in Brugada syndrome (BrS) is still not considered to be useful for clinical management of patients in the majority of cases, due to the current lack of understanding about the effect of specific variants. Additionally, family history of sudden death is generally not considered useful for arrhythmic risk stratification. We sought to demonstrate the usefulness of genetic testing and family history in diagnosis and risk stratification. The family history was collected for a proband who presented with a personal history of aborted cardiac arrest and in whom a novel variant in the SCN5A gene was found. Living family members underwent ajmaline testing, electrophysiological study, and genetic testing to determine genotype-phenotype segregation, if any. Patch-clamp experiments on transfected human embryonic kidney 293 cells enabled the functional characterization of the SCN5A novel variant in vitro. In this study, we provide crucial human data on the novel heterozygous variant NM_198056.2:c.5000T>A (p.Val1667Asp) in the SCN5A gene, and demonstrate its segregation with a severe form of BrS and multiple sudden deaths. Functional data revealed a loss of function of the protein affected by the variant. These results provide the first disease association with this variant and demonstrate the usefulness of genetic testing for diagnosis and risk stratification in certain patients. This study also demonstrates the usefulness of collecting the family history, which can assist in understanding the severity of the disease in certain situations and confirm the importance of the functional studies to distinguish between pathogenic mutations and harmless genetic variants.


Subject(s)
Brugada Syndrome/genetics , Mutation, Missense , NAV1.5 Voltage-Gated Sodium Channel/genetics , Adolescent , Adult , Aged , Ajmaline/pharmacology , Amino Acid Substitution , Brugada Syndrome/complications , Brugada Syndrome/metabolism , Death, Sudden, Cardiac/etiology , Electrocardiography , Female , Genetic Testing , HEK293 Cells , Heterozygote , Humans , Loss of Function Mutation , Male , Middle Aged , Mutant Proteins/genetics , Mutant Proteins/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Patch-Clamp Techniques , Pedigree , Polymorphism, Single Nucleotide , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
13.
Pacing Clin Electrophysiol ; 44(3): 552-556, 2021 03.
Article in English | MEDLINE | ID: mdl-33372694

ABSTRACT

We present, to our knowledge, the first case of immunosuppressive therapy (IST) application in a 12-year-old child with arrhythmogenic inflammatory cardiomyopathy resulting from the overlap between autoimmune myocarditis and primary arrhythmogenic cardiomyopathy. Indication to off-lable IST was compelling, because of recurrent drug-refractory ventricular arrhythmias (VAs). We show that IST was feasible, safe, and effective on multiple clinical endpoints, including symptoms, VA recurrences, and T-troponin release. Remarkably, all diagnostic and therapeutic strategies were worked out by a dedicated multidisciplinary team, including specialized pediatric immunologists.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/drug therapy , Arrhythmogenic Right Ventricular Dysplasia/immunology , Immunosuppression Therapy , Azathioprine/therapeutic use , Biomarkers/blood , Child , Echocardiography , Electrocardiography , Humans , Magnetic Resonance Imaging , Male , Myocarditis/drug therapy , Myocarditis/immunology , Prednisone/therapeutic use , Recurrence , Risk Factors
14.
Eur Heart J ; 42(11): 1082-1090, 2021 03 14.
Article in English | MEDLINE | ID: mdl-33221895

ABSTRACT

AIMS: Brugada syndrome (BrS) is associated with an increased risk of sudden cardiac death due to ventricular tachycardia/fibrillation (VT/VF) in young, otherwise healthy individuals. Despite SCN5A being the most commonly known mutated gene to date, the genotype-phenotype relationship is poorly understood and remains uncertain. This study aimed to elucidate the genotype-phenotype correlation in BrS. METHODS AND RESULTS: Brugada syndrome probands deemed at high risk of future arrhythmic events underwent genetic testing and phenotype characterization by the means of epicardial arrhythmogenic substrate (AS) mapping, and were divided into two groups according to the presence or absence of SCN5A mutation. Two-hundred probands (160 males, 80%; mean age 42.6 ± 12.2 years) were included in this study. Patients harbouring SCN5A mutations exhibited a spontaneous type 1 pattern and experienced aborted cardiac arrest or spontaneous VT/VF more frequently than the other subjects. SCN5A-positive patients exhibited a larger epicardial AS area, more prolonged electrograms and more frequently observed non-invasive late potentials. The presence of an SCN5A mutation explained >26% of the variation in the epicardial AS area and was the strongest predictor of a large epicardial area. CONCLUSION: In BrS, the genetic background is the main determinant for the extent of the electrophysiological abnormalities. SCN5A mutation carriers exhibit more pronounced epicardial electrical abnormalities and a more aggressive clinical presentation. These results contribute to the understanding of the genetic determinants of the BrS phenotypic expression and provide possible explanations for the varying degrees of disease expression.


Subject(s)
Brugada Syndrome , Tachycardia, Ventricular , Adult , Brugada Syndrome/genetics , Electrocardiography , Epicardial Mapping , Humans , Male , Middle Aged , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phenotype , Tachycardia, Ventricular/genetics , Ventricular Fibrillation
15.
EBioMedicine ; 61: 103050, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33045469

ABSTRACT

BACKGROUND: Mutations of the mitochondrial protein paraplegin cause hereditary spastic paraplegia type 7 (SPG7), a so-far untreatable degenerative disease of the upper motoneuron with still undefined pathomechanism. The intermittent mitochondrial permeability transition pore (mPTP) opening, called flickering, is an essential process that operates to maintain mitochondrial homeostasis by reducing intra-matrix Ca2+ and reactive oxygen species (ROS) concentration, and is critical for efficient synaptic function. METHODS: We use a fluorescence-based approach to measure mPTP flickering in living cells and biochemical and molecular biology techniques to dissect the pathogenic mechanism of SPG7. In the SPG7 animal model we evaluate the potential improvement of the motor defect, neuroinflammation and neurodegeneration by means of an mPTP inducer, the benzodiazepine Bz-423. FINDINGS: We demonstrate that paraplegin is required for efficient transient opening of the mPTP, that is impaired in both SPG7 patients-derived fibroblasts and primary neurons from Spg7-/- mice. We show that dysregulation of mPTP opening at the pre-synaptic terminal impairs neurotransmitter release leading to ineffective synaptic transmission. Lack of paraplegin impairs mPTP flickering by a mechanism involving increased expression and activity of sirtuin3, which promotes deacetylation of cyclophilin D, thus hampering mPTP opening. Pharmacological treatment with Bz-423, which bypasses the activity of CypD, normalizes synaptic transmission and rescues the motor impairment of the SPG7 mouse model. INTERPRETATION: mPTP targeting opens a new avenue for the potential therapy of this form of spastic paraplegia. FUNDING: Telethon Foundation grant (TGMGCSBX16TT); Dept. of Defense, US Army, grant W81XWH-18-1-0001.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Metalloendopeptidases/genetics , Mitochondrial Permeability Transition Pore/metabolism , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Animals , Apoptosis/genetics , Biological Transport , Calcium/metabolism , Disease Models, Animal , Disease Susceptibility , Gene Editing , HEK293 Cells , Humans , Membrane Potential, Mitochondrial , Metalloendopeptidases/metabolism , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Neurons/metabolism , Phenotype , Reactive Oxygen Species/metabolism , Sirtuin 3/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Synaptic Vesicles/metabolism
16.
Science ; 370(6515)2020 10 23.
Article in English | MEDLINE | ID: mdl-32972996

ABSTRACT

Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.


Subject(s)
Autoantibodies/blood , Coronavirus Infections/immunology , Interferon Type I/immunology , Interferon alpha-2/immunology , Pneumonia, Viral/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , Case-Control Studies , Critical Illness , Female , Humans , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , SARS-CoV-2
17.
Int J Mol Sci ; 21(16)2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32824506

ABSTRACT

Brugada syndrome (BrS) is diagnosed by the presence of an elevated ST-segment and can result in sudden cardiac death. The most commonly found mutated gene is SCN5A, which some argue is the only gene that has been definitively confirmed to cause BrS, while the potential causative effect of other genes is still under debate. While the issue of BrS genetics is currently a hot topic, current knowledge is not able to result in molecular confirmation of over half of BrS cases. Therefore, it is difficult to develop research models with wide potential. Instead, the clinical genetics first need to be better understood. In this study, we provide crucial human data on the novel heterozygous variant NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene, and demonstrate its segregation with BrS, suggesting a pathogenic effect. These results provide the first disease association with this variant and are crucial clinical data to communicate to basic scientists, who could perform functional studies to better understand the molecular effects of this clinically-relevant variant in BrS.


Subject(s)
Brugada Syndrome/genetics , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , Adult , Aged , Brugada Syndrome/diagnosis , Female , Heterozygote , Humans , Male , Middle Aged , Pedigree
18.
JIMD Rep ; 52(1): 11-16, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32154054

ABSTRACT

Biallelic variants in nuclear gene NDUFA2 have been reported so far in only three children with variable presentations including Leigh syndrome or leukoencephalopathy. Herein, we report a further female child affected by NDUFA2-related disorder presenting with cavitating and tigroid-like pattern of leukodystrophy and without systemic biochemical abnormalities of mitochondrial disorders.

19.
Hum Mutat ; 41(7): 1263-1279, 2020 07.
Article in English | MEDLINE | ID: mdl-32196822

ABSTRACT

Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein-damaging using heterologous expression and complementation analysis. Our findings allow us to confirm multiple variants as pathogenic and broaden the phenotypic spectrum to include dystonia/choreoathetosis, and in some cases a degenerative course with cerebral and cerebellar atrophy. Pathogenic variants appear to act via a haploinsufficiency mechanism, disrupting both the protein synthesis and integrated stress response functions of EEF1A2. Our studies provide evidence that EEF1A2 is highly intolerant to variation and that de novo pathogenic variants lead to an epileptic-dyskinetic encephalopathy with both neurodevelopmental and neurodegenerative features. Developmental features may be driven by impaired synaptic protein synthesis during early brain development while progressive symptoms may be linked to an impaired ability to handle cytotoxic stressors.


Subject(s)
Epilepsy, Generalized/genetics , Mutation, Missense , Peptide Elongation Factor 1/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Genetic Complementation Test , Haploinsufficiency , Heterozygote , Humans , Male , Protein Structure, Tertiary
20.
Oxid Med Cell Longev ; 2019: 4721950, 2019.
Article in English | MEDLINE | ID: mdl-31781336

ABSTRACT

Several neurodegenerative disorders exhibit selective vulnerability, with subsets of neurons more affected than others, possibly because of the high expression of an altered gene or the presence of particular features that make them more susceptible to insults. On the other hand, resilient neurons may display the ability to develop antioxidant defenses, particularly in diseases of mitochondrial origin, where oxidative stress might contribute to the neurodegenerative process. In this work, we investigated the oxidative stress response of embryonic fibroblasts and cortical neurons obtained from Afg3l2-KO mice. AFG3L2 encodes a subunit of a protease complex that is expressed in mitochondria and acts as both quality control and regulatory enzyme affecting respiration and mitochondrial dynamics. When cells were subjected to an acute oxidative stress protocol, the survival of AFG3L2-KO MEFs was not significantly influenced and was comparable to that of WT; however, the basal level of the antioxidant molecule glutathione was higher. Indeed, glutathione depletion strongly affected the viability of KO, but not of WT MEF, thereby indicating that oxidative stress is more elevated in KO MEF even though well controlled by glutathione. On the other hand, when cortical KO neurons were put in culture, they immediately appeared more vulnerable than WT to the acute oxidative stress condition, but after few days in vitro, the situation was reversed with KO neurons being more resistant than WT to acute stress. This compensatory, protective competence was not due to the upregulation of glutathione, rather of two mitochondrial antioxidant proteins: superoxide dismutase 2 and, at an even higher level, peroxiredoxin 3. This body of evidence sheds light on the capability of neurons to activate neuroprotective pathways and points the attention to peroxiredoxin 3, an antioxidant enzyme that might be critical for neuronal survival also in other disorders affecting mitochondria.


Subject(s)
ATP-Dependent Proteases/deficiency , ATPases Associated with Diverse Cellular Activities/deficiency , Cerebral Cortex/enzymology , Gene Expression Regulation, Enzymologic , Neurodegenerative Diseases/enzymology , Neurons/enzymology , Oxidative Stress , Peroxiredoxin III/biosynthesis , Up-Regulation , ATP-Dependent Proteases/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , Animals , Cell Survival/genetics , Cerebral Cortex/pathology , Mice , Mice, Knockout , Mitochondria/enzymology , Mitochondria/genetics , Mitochondria/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/pathology , Peroxiredoxin III/genetics
SELECTION OF CITATIONS
SEARCH DETAIL