Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Plant Dis ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38050404

ABSTRACT

Chile leads cherry exports in the southern hemisphere with a total of 415.315 t exported in the 2022 to 2023 season (IQonsulting, 2023). Cytospora canker, produced by Cytospora spp., causes destructive infections and limit the productivity of sweet cherry orchards (Luo et al. 2019). This study was focused on isolating Cytospora strains to identify and characterize the species present in sweet cherry. During the period 2019-2022, ten samples of stem or branch presenting canker, dieback, gummosis or dead buds, were collected from sweet cherry cultivars 'Skeena', 'Lapins', 'Santina', 'Sweetheart', and 'Regina', in the regions Ñuble and O'Higgins, Chile. Five mm pieces from the necrotic wood margins of the samples were rinsed with sterile deionized water, placed on potato dextrose agar (PDA, Difco) and incubated at 20±2 ºC for 5 days. One isolate was recovered from each sample, resulting in ten Cytospora-like strains. Single hyphal tips were transferred onto PDA plates and all isolates were deposited in the Chilean Collection of Microbial Genetic Resources (CChRGM). Colonies grown on PDA reached 89 mm in diameter in 10 d at 25 °C, showing irregular margin, lacking aerial mycelium, initially off-white to cream that turned greenish gray in the center, which darkens with age. After 20 days of culturing on pine needle agar (Chen et al. 2015), isolates produced conidiomata pycnidial, semi-immersed, black, and subglobose (362)445-555(681)×(357)528-700(1053) µm (n=10), generating amber slimy conidia masses; Conidiophores were phialidic, cylindrical, aseptate, hyaline (6.77)9-10.04(12.88)×(0.82)1.1-1.28(1.99) µm (n = 30); conidia were abundant, allantoid, hyaline to light brown, aseptate (3.39)4.28-4.57(5.36)×(0.69)0.96-1.09(1.47) µm (n = 30) (Supplementary Figure 1). No sexual morph was observed. With the exception of the strain RGM 3390, all the isolates shared morphological characters to the descriptions of Cytospora sorbicola Norphanph., Bulgakov, T. C. Wen & K. D. Hyde (Norphanphoun et al. 2017). Isolates were identified at species level, by sequencing DNA regions described by Pan et al. (2020): ITS1-5.8S-ITS2, LSU; act, tef-1α, and tub2 with the exception of the RBP2, because this region could not be amplified in seven out of ten isolates. The consensus tree included the concatenated sequences of the ten isolates and those of reference Cytospora species reported by Ilyukhin et al. (2023) using a maximum likelihood analysis with the tool IQ-TREE webserver. MLSA confirmed the taxonomic affiliation of nine of the isolates with C. sorbicola and one isolate with Cytospora sp. (RGM 3390), that might represent a novel species (Supplementary Figure 2). The isolates RGM 3399 and RGM 3400, were selected randomly for pathogenicity tests. Inoculations were performed on 2-year-old sweet cherry cv. 'Lapins' grow in pots in a greenhouse at 26±6°C. Seven plants per isolate were cut to about 6-cm length from the main stem, and inoculated onto fresh cuts with 5-mm mycelium PDA plugs of 5-d-old culture and wrapped in moist sterile cotton and parafilm to keep moisture. Six plants were inoculated with non-colonized PDA agar plugs as control. The average canker length 3 months after inoculation was 3.1 and 0.8 cm, for RGM 3389 and RGM 3400, respectively (Supplementary Figure 1). Symptomatic twigs were incubated in moist chambers at 20±2 ºC for 10 d, resulting in the re-isolation of Cytospora strains that produced pycnidia and conidia structures in agreement with C. sorbicola. Both strains were reidentified to fulfill Koch's postulates, control twigs remained asymptomatic and no fungus was isolated from these twigs. This is the first report of C. sorbicola causing canker on sweet cherry in Chile. Our findings suggest that this species could be the most recurrent in cherry in central Chile, coinciding with it found in California where C. sorbicola has been described as the main causal agent of Cytospora canker of stone fruits in California (Lawrence et al. 2018).

2.
Mycologia ; 115(3): 326-339, 2023.
Article in English | MEDLINE | ID: mdl-37017583

ABSTRACT

Stem blight is a destructive woody disease of blueberry (Vaccinium corymbosum) caused by several species of the family Botryosphaeriaceae. A field survey was conducted in the mayor blueberry production area of Chile, comprising latitudes 32°49'S to 40°55'S, to determine the occurrence and distribution of Botryosphaeriaceae in the region. Together, a multilocus analysis, morphological characterization, and phytopathogenicity testing were used to identify 51 Neofusicoccum isolates belonging to N. nonquaesitum (28 strains), N. parvum (22 strains), and N. australe (1 strain). Of these, N. parvum and N. nonquaesitum were the most commonly found, with N. parvum most frequent from latitude 37°40'S to the north and N. nonquaesitum predominantly located from the same latitude toward the south. Morphological traits of the isolates were consistent with the species identified by molecular techniques, despite the overlapping of conidial size of some isolates among species. Pathogenicity trials showed that the three species were pathogenic to blueberry plants and revealed that N. parvum and N. nonquaesitum were the most aggressive species, although variability in virulence was observed among isolates of N. parvum and N. nonquaesitum.


Subject(s)
Ascomycota , Blueberry Plants , Chile , Phylogeny , Plant Diseases , DNA, Fungal , Ascomycota/genetics
3.
Molecules ; 27(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36364011

ABSTRACT

Bacteria belonging to the phylum Actinobacteria are a very good source of antibiotics, and indeed dominate the current clinical antibiotic space. This paper reports Mutactimycin AP, a new compound belonging to an anthracycline-type family of antibiotics, isolated from a Saccharothrix sp. This actinobacterial strain was isolated from the rhizosphere of lupine plants growing in the extreme hyper-arid Atacama Desert. Structural characterization was carried out using electrospray ionization-mass spectrometry (ESI-MS) and NMR spectroscopy in combination with molecular modelling. The compound was tested against the ESKAPE pathogens, where it showed activity against MRSA and five strains associated with bovine mastitis, where it showed activity against Enterococcus pseudoavium and Staphylycoccus Aureus subsp. Aureus.


Subject(s)
Actinobacteria , Actinomycetales , Cattle , Animals , Female , Actinobacteria/chemistry , Soil Microbiology , Bacteria , Anti-Bacterial Agents/pharmacology , Desert Climate
4.
Plant Dis ; 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36044646

ABSTRACT

Vaccinium corymbosum L. is the most cultivated blueberry species in Chile. Chilean fruits typically take up to 50 days to reach oversea markets; therefore, controlling post-harvest pathogens is of outmost importance to maintain international food safety and quality standards. In February 2019, the Microbial Genetic Resources Bank at INIA received fruits of V. corymbosum cv. 'Brigitta Blue' from Mariquina (-39.567869, -72.992461), located in the southern Chilean blueberry production zone, for post-harvest disease diagnosis. Asymptomatic fruits were incubated in moist-chambers at 25 °C with light/darkness cycles of 12 h. After 5 d, some fruits showed sunken areas and small surface wounds that exudated orange masses of conidia; under the epidermis, gray acervuli were also detected. After 15d, these fruits became dehydrated, mummified, and covered by mycelia, all characteristic symptoms of anthracnose (Wharton and Schilder 2008). In Chile, Colletotrichum gloeosporioides has, thus far, been the only causal agent of anthracnose reported in blueberry (Lara et al. 2003). Conidia exudated from the diseased fruit were inoculated on potato-dextrose agar (PDA) and incubated at 25 °C for 7 d. The resulting colony was predominantly cottony with gray aerial mycelium, displaying masses of pale orange conidia; on the reverse side, the colony was a pink-reddish color. Under a microscope, conidia were hyaline, fusiform to elliptic in shape, and displaying guttulate of 12.2±1.2 × 4.17±0.3 µm (n=30), characteristics coinciding with those described for Colletotrichum fioriniae (Pennycook 2017; Shivas and Tan 2009) (Supplementary Figure 1). The isolate was deposited in the Chilean Collection of Microbial Genetic Resources (CChRGM) as RGM 3330. Genomic DNA extraction of RGM 3330 and phylogenetic analyses were carried out according to Cisterna-Oyarce et al. (2022). A multi-locus sequencing analysis was carried out using five genetic markers. The internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (gapdh), actin (act), and chitin synthase 1 (chs-1) were PCR-amplified following Damm et al. (2012) and -tubulin (tub) following Glass and Donaldson (1995). Sequences were deposited in GenBank (ON364141 for ITS and ON369167-70 for tub, act, chs-1, and gapdh, respectively) (Sayers et al. 2021). A BLAST analysis carried out in SequenceServer (Priyam et al. 2019), using a custom database of sequences retrieved from Damm et al. (2012) and Liu et al. (2020), showed that all genetic markers were 100% identical to those of C. fioriniae CBS 128517T (ITS (540/540 identities), gapdh (249/249), act (245/245), and chs-1 (274/274)), except for tub, which shared 99.8% of its identities (416/417) with this species. Maximum likelihood phylogenetic estimation clustered RGM 3330 with C. fioriniae strains CBS 128517T and CBS 126526 with 100% bootstrap support (Supplementary Figure 1). Koch's postulates were carried out with asymptomatic fruits of V. corymbosum cv. 'Brigitta Blue'. Prior to inoculation, fruits were surface-sterilized for 10 s in 70% ethanol, 3 s in 1% NaOCl, 10 s in 70% ethanol, rinsed three times with sterile distilled water, and subsequently placed in moist-chambers. Two groups of three repetitions of 20 fruits each were sprayed with 9 × 106 conidia/mL of RGM 3330 for the first group and with sterile distilled water for the control. After 5 d at 25 °C with light/darkness cycles of 12 h, only fruits sprayed with the conidial solution developed symptoms of anthracnose and the re-isolated fungi were identical in morphology to RGM 3330. This is the first report of C. fioriniae in blueberry in Chile. References Cisterna-Oyarce, V., Carrasco-Fernández, J., Castro, J. F., Santelices, C., Muñoz-Reyes, V., Millas, P., Buddie, A. G., and France, A. 2022. Gnomoniopsis smithogilvyi: identification, characterization and incidence of the main pathogen causing brown rot in postharvest sweet chestnut fruits (Castanea sativa) in Chile. Australasian Plant Disease Notes 17:2. Damm, U., Cannon, P. F., Woudenberg, J. H., and Crous, P. W. 2012. The Colletotrichum acutatum species complex. Stud. Mycol. 73:37-113. Glass, N. L., and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330. Lara, O., Velazquez, C. G., and Ascencio, C. 2003. Colletotrichum gloeosporiodes in blueberry fruit. in: XIII Congreso de Fitopatología. Liu, X., Zheng, X., Khaskheli, M. I., Sun, X., Chang, X., and Gong, G. 2020. Identification of Colletotrichum species associated with blueberry anthracnose in Sichuan, China. Pathogens 9:718. Pennycook, S. 2017. Colletotrichum fioriniae comb. & stat. nov., resolving a nomenclatural muddle. Mycotaxon 132:149-152. Priyam, A., Woodcroft, B. J., Rai, V., Moghul, I., Munagala, A., Ter, F., Chowdhary, H., Pieniak, I., Maynard, L. J., Gibbins, M. A., Moon, H., Davis-Richardson, A., Uludag, M., Watson-Haigh, N. S., Challis, R., Nakamura, H., Favreau, E., Gómez, E. A., Pluskal, T., Leonard, G., Rumpf, W., and Wurm, Y. 2019. Sequenceserver: a modern graphical user interface for custom BLAST databases. Mol. Biol. Evol. 36:2922-2924. Sayers, E. W., Cavanaugh, M., Clark, K., Pruitt, K. D., Schoch, C. L., Sherry, S. T., and Karsch-Mizrachi, I. 2021. GenBank. Nucleic Acids Res. 49:D92-D96. Shivas, R. G., and Tan, Y. P. 2009. A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov. Fungal Divers. 39:111-122. Wharton, P., and Schilder, A. 2008. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57:122-134. Supplementary material Supplementary Figure 1: Isolation and identification of Colletotrichum fioriniae RGM 3330 from blueberry fruits cv. 'Brigitta Blue' from Chile. (A) A fruit showing anthracnose; (B) colony of Colletotrichum fioriniae RGM 3330 growing on PDA; (C) microscopic observation of the conidia (100x magnification; bar=10 µm); (D) phylogenetic tree resulting from a maximum likelihood analysis of combined sequence data from ITS, act, chs-1, gapdh, and tub regions for Colletotrichum acutatum species complex, number in the nodes represent ultrafast bootstrap values.

5.
Microbiol Resour Announc ; 11(7): e0033522, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35731123

ABSTRACT

Pseudomonas sp. strain RGM 3321 is a phyllosphere endophyte from Fragaria chiloensis subsp. chiloensis f. patagonica that harbors genes associated with plant growth promotion pathways, as well as genes typically found in plant pathogens.

6.
Microorganisms ; 10(4)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35456723

ABSTRACT

The B. safensis RGM 2450 and B. siamensis RGM 2529 strains were isolated from the rhizosphere of plants presenting resilience to abiotic and biotic stress conditions. To understand the implications of bacteria in resilience, a genomic and experimental analysis was carried out on their biostimulant and phytopathogenic antagonist properties. Genome analyses of both strains indicated that they have the potential to synthesize bioactive compounds such as the battery of non-ribosomal peptides, polyketides, extracellular enzymes and phytohormones. These results were consistent with the antagonistic activities of both strains against the phytopathogens Botrytis cinerea, Colletotrichum acutatum, Fusarium oxysporum and Phytophtora cinnamomi. They also showed the capacity to solubilize phosphorus, fix nitrogen and produce indole acetic acid. This was observed in tomato seedlings grown from seeds inoculated with the mixture of strains which presented significantly greater length as well as wet and dry weight in comparison with the treatments individually inoculated with each strain and the control. Accordingly, the combination of B. safensis RGM 2450 and B. siamensis RGM 2529 showed synergistic biostimulant activity. These findings contribute new knowledge of the genomic and metabolomic properties taking part in the symbiotic interactions between these strains and the plants and uphold the combined use of both strains as a biostimulant.

7.
J Fungi (Basel) ; 8(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35330256

ABSTRACT

The entomopathogenic fungus Beauveria pseudobassiana strain RGM 2184 can reach a maximum efficacy of 80% against the quarantine pest Lobesia botrana in field assays. In this study, the RGM 2184 genome was sequenced, and genome mining analyses were performed to predict the factors involved in its insecticidal activity. Additionally, the metabolic profiling of the RMG 2184 culture's supernatants was analyzed by mass spectrometry, and the insecticidal activity from one of these extracts was evaluated in Galleria mellonella larvae. The genome analysis resulted in 114 genes encoding for extracellular enzymes, four biosynthetic gene clusters reported as producers of insecticidal and bactericidal factors (oosporein, beauvericin, desmethylbassianin, and beauveriolide), 20 toxins, and at least 40 undescribed potential biocontrol factors (polyketides and nonribosomal peptides). Comparative genomic analysis revealed that 65-95% of these genes are Beauveria genus-specific. Metabolic profiling of supernatant extracts from RGM 2184 cultures exhibited secondary metabolites such as beauveriolide, oosporein, inflatin C, and bassiatin. However, a number of detected metabolites still remain undescribed. The metabolite extract caused 79% mortality of Galleria mellonella larvae at 28 days. The results of this research lay the groundwork for the study of new insecticidal molecules.

8.
J Antibiot (Tokyo) ; 73(11): 772-779, 2020 11.
Article in English | MEDLINE | ID: mdl-32908238

ABSTRACT

Lasso peptides are a diverse class of ribosomally synthesized and post-translationally modified peptides (RiPPs). Their proteolytic and thermal stability alongside their growing potential as therapeutics has increased attention to these antimicrobial peptides. With the advent of genome mining, the discovery of RiPPs allows for the accurate prediction of putatively encoded structures, however, MSn experiments only provide partial sequence confirmation, therefore 2D NMR experiments are necessary for characterisation. Multiple MS/MS techniques were applied to two structurally characterized lasso peptides, huascopeptin and leepeptin, and one uncharacterized lasso peptide, citrulassin C, which was not isolable in sufficient quantity for NMR analysis. We have shown that MS2 can be used to elucidate the full amino acid sequences previously predicted with genome mining for this compound class. HCD was able to open the macrocycles and fragment the newly opened linear peptides, confirming the complete amino acid sequences of the characterised lasso peptides. In addition, to determine if this technique could be applied at the earliest stages of the isolation process, we targeted a lasso peptide found by genome mining, citrulassin C, and were able to fully elucidate the amino acid sequence using only MS2 from a semi-crude extract of Streptomyces huasconensis HST28T.


Subject(s)
Mass Spectrometry/methods , Peptides, Cyclic/genetics , Sequence Analysis, Protein/methods , Amino Acid Sequence , Peptides, Cyclic/chemistry
9.
Appl Environ Microbiol ; 85(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31562169

ABSTRACT

Analysis of the genome sequence of Streptomyces leeuwenhoekii C34T identified biosynthetic gene clusters (BGCs) for three different lasso peptides (Lp1, Lp2, and Lp3) which were not known to be made by the strain. Lasso peptides represent relatively new members of the RiPP (ribosomally synthesized and posttranslationally modified peptides) family of natural products and have not been extensively studied. Lp3, whose production could be detected in culture supernatants from S. leeuwenhoekii C34T and after heterologous expression of its BGC in Streptomyces coelicolor, is identical to the previously characterized chaxapeptin. Lp1, whose production could not be detected or achieved heterologously, appears to be identical to a recently identified member of the citrulassin family of lasso peptides. Since production of Lp2 by S. leeuwenhoekii C34T was not observed, its BGC was also expressed in S. coelicolor The lasso peptide was isolated and its structure confirmed by mass spectrometry and nuclear magnetic resonance analyses, revealing a novel structure that appears to represent a new family of lasso peptides.IMPORTANCE Recent developments in genome sequencing combined with bioinformatic analysis have revealed that actinomycetes contain a plethora of unexpected BGCs and thus have the potential to produce many more natural products than previously thought. This reflects the inability to detect the production of these compounds under laboratory conditions, perhaps through the use of inappropriate growth media or the absence of the environmental cues required to elicit expression of the corresponding BGCs. One approach to overcoming this problem is to circumvent the regulatory mechanisms that control expression of the BGC in its natural host by deploying heterologous expression. The generally compact nature of lasso peptide BGCs makes them particularly amenable to this approach, and, in the example given here, analysis revealed a new member of the lasso peptide family of RiPPs. This approach should be readily applicable to other cryptic lasso peptide gene clusters and would also facilitate the design and production of nonnatural variants by changing the sequence encoding the core peptide, as has been achieved with other classes of RiPPs.


Subject(s)
Bacterial Proteins/genetics , Gene Expression , Multigene Family , Peptides/genetics , Streptomyces/genetics , Bacterial Proteins/metabolism , Peptides/metabolism , Streptomyces/metabolism
10.
Antonie Van Leeuwenhoek ; 112(12): 1863-1874, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31407134

ABSTRACT

A set of oligonucleotide primers, Rubro223f and Rubro454r, were found to amplify a 267 nucleotide sequence of 16S rRNA genes of Rubrobacter type strains. The primers distinguished members of this genus from other deeply-rooted actinobacterial lineages corresponding to the genera Conexibacter, Gaiella, Parviterribacter, Patulibacter, Solirubrobacter and Thermoleophilum of the class Thermoleophilia. Amplification of DNA bands of about 267 nucleotides were generated from environmental DNA extracted from soil samples taken from two locations in the Atacama Desert. Sequencing of a DNA library prepared from the bands showed that all of the clones fell within the evolutionary radiation occupied by the genus Rubrobacter. Most of the clones were assigned to two lineages that were well separated from phyletic lines composed of Rubrobacter type strains. It can be concluded that primers Rubro223f and Rubro454r are specific for the genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes.


Subject(s)
Actinobacteria/isolation & purification , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Actinobacteria/classification , Actinobacteria/genetics , DNA Primers/genetics , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , RNA, Ribosomal, 16S/genetics , Sensitivity and Specificity , Soil Microbiology , South America
11.
Front Microbiol ; 10: 1457, 2019.
Article in English | MEDLINE | ID: mdl-31333602

ABSTRACT

This study was designed to determine the plant growth promoting (PGP) potential of members of the genus Frankia. To this end, the genomes of 21 representative strains were examined for genes associated directly or indirectly with plant growth. All of the Frankia genomes contained genes that encoded for products associated with the biosynthesis of auxins [indole-3-glycerol phosphate synthases, anthranilate phosphoribosyltransferases (trpD), anthranilate synthases, and aminases (trpA and B)], cytokinins (11 well-conserved genes within the predicted biosynthetic gene cluster), siderophores, and nitrogenases (nif operon except for atypical Frankia) as well as genes that modulate the effects of biotic and abiotic environmental stress (e.g., alkyl hydroperoxide reductases, aquaporin Z, heat shock proteins). In contrast, other genes were associated with strains assigned to one or more of four host-specific clusters. The genes encoding for phosphate solubilization (e.g., low-affinity inorganic phosphate transporters) and lytic enzymes (e.g., cellulases) were found in Frankia cluster 1 genomes, while other genes were found only in cluster 3 genomes (e.g., alkaline phosphatases, extracellular endoglucanases, pectate lyases) or cluster 4 and subcluster 1c genomes (e.g., NAD(P) transhydrogenase genes). Genes encoding for chitinases were found only in the genomes of the type strains of Frankia casuarinae, F. inefficax, F. irregularis, and F. saprophytica. In short, these in silico genome analyses provide an insight into the PGP abilities of Frankia strains of known taxonomic provenance. This is the first study designed to establish the underlying genetic basis of cytokinin production in Frankia strains. Also, the discovery of additional genes in the biosynthetic gene cluster involved in cytokinin production opens up the prospect that Frankia may have novel molecular mechanisms for cytokinin biosynthesis.

12.
Int J Syst Evol Microbiol ; 69(6): 1537-1545, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30990393

ABSTRACT

A Gram-reaction-positive, aerobic bacterial strain showing coccoid cells and designated as BC 501T was isolated from a black patina of the surface of a Carrara marble blockin the Gioia quarry in Tuscany, Italy. A polyphasic study was carried out to clarify the taxonomic status of BC 501T within the evolutionary radiation of the genus Modestobacter. Phenotypic and genotypic characteristics as well as phylogenetic distinctiveness confirmed that it represents a novel species of the genus Modestobacter, for which the name Modestobacteritalicus sp. nov. is proposed. The type strain is BC 501T (=DSM 44449T=CECT 9708T). Emended descriptions of the genus Modestobacter and the species Modestobacter marinus, Modestobacter multiseptatus, Modestobacter roseus and Modestobacter versicolor are also proposed.


Subject(s)
Actinobacteria/classification , Calcium Carbonate , Phylogeny , Actinobacteria/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genotype , Italy , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
13.
Sci Rep ; 9(1): 4678, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30886188

ABSTRACT

The taxonomic status, biotechnological and ecological potential of several Micromonospora strains isolated from an extreme hyper arid Atacama Desert soil were determined. Initially, a polyphasic study was undertaken to clarify the taxonomic status of five micromonosporae, strains LB4, LB19, LB32T, LB39T and LB41, isolated from an extreme hyper-arid soil collected from one of the driest regions of the Atacama Desert. All of the isolates were found to have chemotaxonomic, cultural and morphological properties consistent with their classification in the genus Micromonospora. Isolates LB32T and LB39T were distinguished from their nearest phylogenetic neighbours and proposed as new species, namely as Micromonospora arida sp. nov. and Micromonospora inaquosa sp. nov., respectively. Eluted methanol extracts of all of the isolates showed activity against a panel of bacterial and fungal indicator strains, notably against multi-drug resistant Klebsiella pneumoniae ATCC 700603 while isolates LB4 and LB41 showed pronounced anti-tumour activity against HepG2 cells. Draft genomes generated for the isolates revealed a rich source of novel biosynthetic gene clusters, some of which were unique to individual strains thereby opening up the prospect of selecting especially gifted micromonosporae for natural product discovery. Key stress-related genes detected in the genomes of all of the isolates provided an insight into how micromonosporae adapt to the harsh environmental conditions that prevail in extreme hyper-arid Atacama Desert soils.


Subject(s)
Anti-Infective Agents/isolation & purification , Antineoplastic Agents/isolation & purification , Klebsiella Infections/therapy , Klebsiella pneumoniae/physiology , Liver Neoplasms/therapy , Methanol/isolation & purification , Micromonospora/physiology , Anti-Infective Agents/therapeutic use , Antineoplastic Agents/therapeutic use , Cell Extracts , Chile , Desert Climate , Drug Discovery , Hep G2 Cells , Humans , Phylogeny , Soil Microbiology , Streptomyces/physiology , Stress, Physiological/genetics
14.
Microorganisms ; 8(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906060

ABSTRACT

Botrytis cinerea causes substantial losses in tomato and chili pepper crops worldwide. Endophytes have shown the potential for the biological control of diseases. The colonization ability of native endophyte strains of Beauveria bassiana and their antifungal effect against B. cinerea were evaluated in Solanaceae crops. Root drenching with B. bassiana was applied, and endophytic colonization capacity in roots, stems, and leaves was determined. The antagonistic activity was evaluated using in vitro dual culture and also plants by drenching the endophyte on the root and by pathogen inoculation in the leaves. Ten native strains were endophytes of tomato, and eight were endophytes of chili pepper. All strains showed significant in vitro antagonism against B. cinerea (30-36%). A high antifungal effect was observed, and strains RGM547 and RGM644 showed the lowest percentage of the surface affected by the pathogen. Native strains of B. bassiana colonized tomato and chili pepper tissues and provided important levels of antagonism against B. cinerea.

15.
Int J Syst Evol Microbiol ; 68(9): 2712-2721, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29969090

ABSTRACT

A polyphasic study was undertaken to establish the taxonomic status of a Blastococcus strain isolated from an extreme hyper-arid Atacama Desert soil. The isolate, strain P6T, was found to have chemotaxonomic and morphological properties consistent with its classification in the genus Blastococcus. It was shown to form a well-supported branch in the Blastococcus 16S rRNA gene tree together with the type strains of Blastococcus capsensis and Blastococcus saxobsidens and was distinguished from the latter, its close phylogenetic neighbour, by a broad range of phenotypic properties. The draft genome sequence of isolate P6T showed 84.6 % average nucleotide identity, 83.0 % average amino acid identity and a digital DNA-DNA hybridisation value of 27.8 % in comparison with the genome sequence of B. saxobsidens DSM 44509T, values consistent with its assignment to a separate species. Based on these data it is proposed that isolate P6T (NCIMB 15090T=NRRL B-65468T) be assigned to the genus Blastococcus as Blastococcus atacamensis sp. nov. Analysis of the whole genome sequence of B. atacamensis P6T, with 3778 open reading frames and a genome size of 3.9 Mb showed the presence of genes and gene clusters that encode for properties that reflect its adaptation to the extreme environmental conditions that prevail in Atacama Desert soils.


Subject(s)
Actinomycetales/classification , Desert Climate , Phylogeny , Soil Microbiology , Actinomycetales/genetics , Actinomycetales/isolation & purification , Bacterial Typing Techniques , Base Composition , Chile , DNA, Bacterial/genetics , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
16.
Syst Appl Microbiol ; 41(5): 427-436, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29789182

ABSTRACT

A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T=NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.


Subject(s)
Actinobacteria/classification , Actinobacteria/genetics , Desert Climate , Phylogeny , Soil Microbiology , Actinobacteria/chemistry , Actinobacteria/physiology , Chile , DNA, Bacterial/genetics , Genes, Bacterial , Genome, Bacterial/genetics , Multigene Family , Phenotype , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Species Specificity
17.
Antonie Van Leeuwenhoek ; 111(8): 1479-1491, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29396707

ABSTRACT

Metabolic modelling is a useful tool that enables the rational design of metabolic engineering experiments and the study of the unique capabilities of biotechnologically important microorganisms. The extreme abiotic conditions of the Atacama Desert have selected microbial diversity with exceptional characteristics that can be applied in the mining industry for bioleaching processes and for production of specialised metabolites with antimicrobial, antifungal, antiviral, antitumoral, among other activities. In this review we summarise the scientific data available of the use of metabolic modelling and flux analysis to improve the performance of Atacama Desert microorganisms in biotechnological applications.


Subject(s)
Bacteria/metabolism , Biotechnology , Metabolic Flux Analysis , Metabolic Networks and Pathways , Models, Biological , Soil Microbiology , Bacteria/classification , Chile , Desert Climate , Genome, Bacterial/genetics , Metabolomics
18.
Antonie Van Leeuwenhoek ; 111(8): 1433-1448, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29397490

ABSTRACT

Streptomyces leeuwenhoekii strains C34T, C38, C58 and C79 were isolated from a soil sample collected from the Chaxa Lagoon, located in the Salar de Atacama in northern Chile. These streptomycetes produce a variety of new specialised metabolites with antibiotic, anti-cancer and anti-inflammatory activities. Moreover, genome mining performed on two of these strains has revealed the presence of biosynthetic gene clusters with the potential to produce new specialised metabolites. This review focusses on this new clade of Streptomyces strains, summarises the literature and presents new information on strain C34T.


Subject(s)
Streptomyces/classification , Streptomyces/physiology , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Chile , Genome, Bacterial/genetics , Molecular Structure , Multigene Family/genetics , Phylogeny , Soil Microbiology , Streptomyces/genetics , Streptomyces/metabolism
19.
Antonie Van Leeuwenhoek ; 111(9): 1523-1533, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29428970

ABSTRACT

The taxonomic position of a novel Amycolatopsis strain isolated from a high altitude Atacama Desert subsurface soil was established using a polyphasic approach. The strain, isolate H5T, was shown to have chemical properties typical of members of the genus Amycolatopsis such as meso-diaminopimelic acid as the diamino acid in the cell wall peptidoglycan, arabinose and galactose as diagnostic sugars and MK-9(H4) as the predominant isoprenologue. It also has cultural and morphological properties consistent with its classification in the genus, notably the formation of branching substrate hyphae which fragment into rod-like elements. 16S rRNA gene sequence analyses showed that the strain is closely related to the type strain of Amycolatopsis mediterranei but could be distinguished from this and other related Amycolatopsis strains using a broad range of phenotypic properties. It was separated readily from the type strain of Amycolatopsis balhymycina, its near phylogenetic neighbour, based on multi-locus sequence data, by low average nucleotide identity (92.9%) and in silico DNA/DNA relatedness values (51.3%) calculated from draft genome assemblies. Consequently, the strain is considered to represent a novel species of Amycolatopsis for which the name Amycolatopsis vastitatis sp. nov. is proposed. The type strain is H5T (= NCIMB 14970T = NRRL B-65279T).


Subject(s)
Actinomycetales/classification , Actinomycetales/genetics , Altitude , Phylogeny , Soil Microbiology , Actinomycetales/chemistry , Actinomycetales/growth & development , Base Composition , Carbohydrate Metabolism , Cell Wall/chemistry , Chile , DNA, Bacterial/genetics , Desert Climate , Diaminopimelic Acid/chemistry , Fatty Acids/metabolism , Genome, Bacterial/genetics , Hyphae/ultrastructure , Nucleic Acid Hybridization , Peptidoglycan/chemistry , Phenotype , RNA, Ribosomal, 16S/genetics , Sugars/metabolism
20.
Antonie Van Leeuwenhoek ; 110(5): 705-717, 2017 May.
Article in English | MEDLINE | ID: mdl-28185026

ABSTRACT

A polyphasic study was undertaken to determine the taxonomic status of a Streptomyces strain which had been isolated from a high altitude Atacama Desert soil and shown to have bioactive properties. The strain, isolate H9T, was found to have chemotaxonomic, cultural and morphological properties that place it in the genus Streptomyces. 16S rRNA gene sequence analyses showed that the isolate forms a distinct branch at the periphery of a well-delineated subclade in the Streptomyces 16S rRNA gene tree together with the type strains of Streptomyces crystallinus, Streptomyces melanogenes and Streptomyces noboritoensis. Multi-locus sequence analysis (MLSA) based on five house-keeping gene alleles showed that isolate H9T is closely related to the latter two type strains and to Streptomyces polyantibioticus NRRL B-24448T. The isolate was distinguished readily from the type strains of S. melanogenes, S. noboritoensis and S. polyantibioticus using a combination of phenotypic properties. Consequently, the isolate is considered to represent a new species of Streptomyces for which the name Streptomyces aridus sp. nov. is proposed; the type strain is H9T (=NCIMB 14965T=NRRL B65268T). In addition, the MLSA and phenotypic data show that the S. melanogenes and S. noboritoensis type strains belong to a single species, it is proposed that S. melanogenes be recognised as a heterotypic synonym of S. noboritoensis for which an emended description is given.


Subject(s)
Soil Microbiology , Streptomyces/classification , Streptomyces/isolation & purification , Altitude , Bacterial Typing Techniques , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Desert Climate , Fatty Acids/analysis , Microscopy, Electron, Scanning , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Streptomyces/genetics , Streptomyces/physiology
SELECTION OF CITATIONS
SEARCH DETAIL