Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transbound Emerg Dis ; 69(6): 4022-4027, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36150076

ABSTRACT

Crimean-Congo haemorrhagic fever (CCHF) is an emerging tick-borne disease caused by the arbovirus Crimean-Congo haemorrhagic fever virus (CCHFV; family Nairoviridae). Given the public health impact, CCHF is considered a priority disease for the European Union. This study describes the first detection of anti-CCHFV antibodies in transhumant bovines in Italy. Sera from 794 cattle collected across Basilicata region (Southern Italy) were screened using a commercial ELISA kit. The animal-level and herd-level seroprevalences detected were 1.89% [95%CI: 1.12-3.1] and 29.63% [95%CI: 15.68-48.65], respectively. Results of the χ2 test for trend show that the exposure to CCHFV was significantly associated with increasing age, with the odds 5 times higher in 11-22-year old cattle than 1-4-year old cattle. The detection of antibodies against CCHFV in indigenous cattle indicates that the infection occurred in the study area and may warrant further consideration. Additionally, no significant spatial clustering of CCHF infection was detected, supporting the hypothesis that the disease is widespread in the region. Further studies at larger scale are needed to identify the areas at higher risk of zoonotic infection. A One Health approach should be implemented to better understand the disease risk and dynamics in the country, which effectively address the related public health threat.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean , Cattle , Animals , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/veterinary , Hemorrhagic Fever, Crimean/diagnosis , Zoonoses , Italy/epidemiology , Antibodies, Viral
2.
Foods ; 11(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010481

ABSTRACT

Bacillus cereus is isolated from a variety of foods where it may cause food spoilage and/or food poisoning due to its toxigenic and pathogenic nature. In this study, we identified members of B. cereus groups in 65% of the ice cream samples analyzed, which were characterized based on multi locus variable number tandem repeats analysis (MLVA) and whole genome sequencing (WGS). The MLVA revealed that 36 strains showed different allelic profiles. Analyses of WGS data enabled the identification of three members of the B. cereus group: B. cereus sensu stricto, B. mosaicus and B. thuringiensis. Based on the multi locus sequence typing (MLST) scheme, the strains were classified in 27 sequence types (STs), including ST26 that causes food poisoning. Toxin genes' detection revealed the presence of the genes encoding nonhemolytic enterotoxin (NHE), hemolysin BL (HBL), cytotoxin K (cytK) and cereulide (ces) in 100%, 44%, 42% and 8% of the strains, respectively. The identification of eleven antimicrobial resistance (AMR) genes predicted the resistance to five different antimicrobials, and the resistance to beta-lactam antibiotics was confirmed with a phenotypic antimicrobial test. Taken together, the results showed that the B. cereus strains isolated from ice cream were a potential hazard for consumer safety.

SELECTION OF CITATIONS
SEARCH DETAIL
...