Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; : e2400496, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101719

ABSTRACT

The present study elucidates the role of annealing with electric field on lamellar crystalline structure and molecular orientation of polymer chains in ferroelectric copolymer (P(VDF-TrFE)) and ferroelectric terpolymer (P(VDF-TrFE-CFE)) spin-coated thin films. The ferroelectric polymer thin films annealed under an electric field support the growth of nanostructure with an "edge-on" lamellar crystalline structure having in-plane molecular chain orientation. The poled P(VDF-TrFE) thin films have higher remnant polarization (Pr) ≈6.2 µC cm-2 and saturation polarization (Ps) ≈8.2 µC cm-2 at an applied electric field of 250 MV/m compared to unpoled thin films having Pr ≈4.7 and Ps ≈6.2 µC cm-2. Also, poled P(VDF-TrFE) thin films show lower coercive field (Ec) ≈94 MV/m compared to an unpoled thin film having Ec ≈105 MV/m. Similarly, poled PVDF-TrFE-CFE thin film shows better ferroelectric properties having Pr ≈0.4 and Ps ≈5.7 µC cm-2 at an applied electric field of 200 MV m-1 compared to unpoled thin films having Pr ≈0.4 and Ps ≈4.1 µC cm-2. The storage energy efficiency of unpoled and poled P(VDF-TrFE-CFE) thin films is measured to be ≈75% and 80%. Annealing of ferroelectric P(VDF-TrFE) polymer thin films under an electric field demonstrates improved ferroelectric and electroactive properties.

2.
Mol Ecol Resour ; 17(6): 1359-1370, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28332322

ABSTRACT

The DNA barcodes are generally interpreted using distance-based and character-based methods. The former uses clustering of comparable groups, based on the relative genetic distance, while the latter is based on the presence or absence of discrete nucleotide substitutions. The distance-based approach has a limitation in defining a universal species boundary across the taxa as the rate of mtDNA evolution is not constant throughout the taxa. However, character-based approach more accurately defines this using a unique set of nucleotide characters. The character-based analysis of full-length barcode has some inherent limitations, like sequencing of the full-length barcode, use of a sparse-data matrix and lack of a uniform diagnostic position for each group. A short continuous stretch of a fragment can be used to resolve the limitations. Here, we observe that a 154-bp fragment, from the transversion-rich domain of 1367 COI barcode sequences can successfully delimit species in the three most diverse orders of freshwater fishes. This fragment is used to design species-specific barcode motifs for 109 species by the character-based method, which successfully identifies the correct species using a pattern-matching program. The motifs also correctly identify geographically isolated population of the Cypriniformes species. Further, this region is validated as a species-specific mini-barcode for freshwater fishes by successful PCR amplification and sequencing of the motif (154 bp) using the designed primers. We anticipate that use of such motifs will enhance the diagnostic power of DNA barcode, and the mini-barcode approach will greatly benefit the field-based system of rapid species identification.


Subject(s)
DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Fishes/classification , Fishes/genetics , Animals , DNA Primers/genetics , Polymerase Chain Reaction , Sequence Analysis, DNA
3.
Mitochondrial DNA ; 26(2): 175-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24409929

ABSTRACT

Efficacy of cytochrome c oxidase subunit I (COI) DNA barcode in higher taxon assignment is still under debate in spite of several attempts, using the conventional DNA barcoding methods, to assign higher taxa. Here we try to understand whether nucleotide and amino acid sequence in COI gene carry sufficient information to assign species to their higher taxonomic rank, using 160 species of Indian freshwater fishes. Our results reveal that with increase in the taxonomic rank, sequence conservation decreases for both nucleotides and amino acids. Order level exhibits lowest conservation with 50% of the nucleotides and amino acids being conserved. Among the variable sites, 30-50% were found to carry high information content within an order, while it was 70-80% within a family and 80-99% within a genus. High information content shows sites with almost conserved sequence but varying at one or two locations, which can be due to variations at species or population level. Thus, the potential of COI gene in higher taxon assignment is revealed with validation of ample inherent signals latent in the gene.


Subject(s)
Electron Transport Complex IV/genetics , Fishes/classification , Fishes/genetics , Genes, Mitochondrial , Amino Acid Sequence , Animals , Base Sequence , DNA Barcoding, Taxonomic
4.
Gene ; 537(1): 20-8, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24378233

ABSTRACT

Freshwater fishes in India are poorly known and plagued by many unresolved cryptic species complexes that masks some latent and endemic species. Limitations in traditional taxonomy have resulted in this crypticism. Hence, molecular approaches like DNA barcoding, are needed to diagnose these latent species. We have analyzed 1383 barcode sequences of 175 Indian freshwater fish species available in the databases, of which 172 sequences of 70 species were generated. The congeneric and conspecific genetic divergences were calculated using Kimura's 2 parameter distance model followed by the construction of a Neighbor Joining tree using the MEGA 5.1. DNA barcoding principle at its first hand approach, led to the straightforward identification of 82% of the studied species with 2.9% (S.E=0.2) divergence between the nearest congeners. However, after validating some cases of synonymy and mislabeled sequences, 5% more species were found to be valid. Sequences submitted to the database under different names were found to represent single species. On the other hand, some sequences of the species like Barilius barna, Barilius bendelisis and Labeo bata were submitted to the database under a single name but were found to represent either some unexplored species or latent species. Overall, 87% of the available Indian freshwater fish barcodes were diagnosed as true species in parity with the existing checklist and can act as reference barcode for the particular taxa. For the remaining 13% (21 species) the correct species name was difficult to assign as they depicted some erroneous identification and cryptic species complex. Thus, these barcodes will need further assay and inclusion of barcodes of more specimens from same and sister species.


Subject(s)
DNA Barcoding, Taxonomic , Fishes/classification , Fishes/genetics , Animals , Electron Transport Complex IV/genetics , Fresh Water , India , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL