Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
Int J Obes (Lond) ; 35(4): 605-17, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20733586

ABSTRACT

OBJECTIVE: The gene TSPAN8 was recently identified in a genome-wide association study as the most likely causal gene in a locus that was correlated with the risk of type 2 diabetes (T2D) in northern European individuals. To assess whether Tspan8 is the actual T2D-causal gene in this locus, we ablated its expression in mice and determined the consequences of this ablation on a multitude of metabolic traits. RESULTS: We found that genetic ablation of Tspan8 in mice results in a reduction (-15.6%) in the body weight of males fed a normal chow diet and that this deficiency results in a resistance to body weight gain (-13.7%) upon feeding a high fat and high carbohydrate diet. The differences in body weight could only be detected in male mice and were the consequence of both a decrease in fat deposition, and a decrease in lean body mass (16.9 and 11%, respectively). In spite of the significant body weight difference, no changes in fasting insulin and glucose levels could be detected in Tspan8 knockout mice, nor could we identify changes in the clearance of glucose or sensitivity to insulin in oral glucose tolerance test and intraperitoneal insulin sensitivity test studies, respectively. In addition, male Tspan8 knockout mice showed significantly lower bone mineral density and phosphorus levels (6.2 and 16.6%, respectively). Expression of Tspan8 in mouse was highest in digestive tissues, but virtually absent from the pancreas. In contrast, expression of human TSPAN8 was substantial in digestive tissues, as well as pancreatic cells. CONCLUSIONS: Our results argue for a role for Tspan8 in body-weight regulation in males, but do not show differences in T2D-associated traits that were anticipated from previous human genome-wide association studies. Differences in Tspan8 expression levels in mouse and human tissues suggest that Tspan8 could fulfill different or additional physiological functions in these organisms.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Insulin Resistance/physiology , Membrane Glycoproteins/deficiency , Obesity/metabolism , Animals , Antigens, Neoplasm/genetics , Body Weight/physiology , Diabetes Mellitus, Type 2/genetics , Female , Genome-Wide Association Study , Insulin Resistance/genetics , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Obesity/genetics , Sex Factors , Tetraspanins
2.
Mol Cell ; 8(4): 737-47, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11684010

ABSTRACT

FMOC-L-Leucine (F-L-Leu) is a chemically distinct PPARgamma ligand. Two molecules of F-L-Leu bind to the ligand binding domain of a single PPARgamma molecule, making its mode of receptor interaction distinct from that of other nuclear receptor ligands. F-L-Leu induces a particular allosteric configuration of PPARgamma, resulting in differential cofactor recruitment and translating in distinct pharmacological properties. F-L-Leu activates PPARgamma with a lower potency, but a similar maximal efficacy, than rosiglitazone. The particular PPARgamma configuration induced by F-L-Leu leads to a modified pattern of target gene activation. F-L-Leu improves insulin sensitivity in normal, diet-induced glucose-intolerant, and in diabetic db/db mice, yet it has a lower adipogenic activity. These biological effects suggest that F-L-Leu is a selective PPARgamma modulator that activates some (insulin sensitization), but not all (adipogenesis), PPARgamma-signaling pathways.


Subject(s)
Adipocytes/physiology , Amino Acids/pharmacology , Fluorenes/pharmacology , Leucine/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Thiazolidinediones , Transcription Factors/metabolism , Adipocytes/drug effects , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Binding Sites , Blood Glucose/metabolism , Body Weight , Cell Differentiation , Cell Line , Dose-Response Relationship, Drug , Fluorenes/chemistry , Fluorenes/metabolism , Gene Expression Regulation/physiology , Genes, Reporter , Hypoglycemic Agents/pharmacology , Insulin Resistance/physiology , Leucine/metabolism , Ligands , Male , Mice , Mice, Inbred Strains , Molecular Structure , Protein Binding , Protein Conformation , Receptors, Cytoplasmic and Nuclear/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Rosiglitazone , Spectrometry, Mass, Electrospray Ionization , Thiazoles/pharmacology , Transcription Factors/genetics , Transcriptional Activation , Tyrosine/chemistry , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL