Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 266
1.
Neuro Oncol ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822538

BACKGROUND: The incidence of leptomeningeal metastases (LM) has been reported diversely. This study aimed to investigate the incidence, risk factors, and prognosis of LM in patients with IDH-wildtype glioblastoma. METHODS: A total of 828 patients with IDH-wildtype glioblastoma were enrolled between 2005 and 2022. Baseline preoperative MRI including post-contrast fluid-attenuated inversion recovery (FLAIR) was used for LM diagnosis. Qualitative and quantitative features, including distance between tumor and subventricular zone (SVZ) and tumor volume by automatic segmentation of the lateral ventricles and tumor, were assessed. Logistic analysis of LM development was performed using clinical, molecular, and imaging data. Survival analysis was performed. RESULTS: The incidence of LM was 11.4%. MGMTp unmethylation (odds ratio [OR] = 1.92, P = 0.014), shorter distance between tumor and SVZ (OR = 0.94, P = 0.010), and larger contrast-enhancing tumor volume (OR = 1.02, P < 0.001) were significantly associated with LM. The overall survival (OS) was significantly shorter in patients with LM than in those without (log-rank test; P < 0.001), with median OS of 12.2 and 18.5 months, respectively. Presence of LM remained an independent prognostic factor for OS in IDH-wildtype glioblastoma (hazard ratio = 1.42, P = 0.011), along with other clinical, molecular, imaging, and surgical prognostic factors. CONCLUSION: The incidence of LM is high in patients with IDH-wildtype glioblastoma, and aggressive molecular and imaging factors are correlated with LM development. The prognostic significance of LM based on post-contrast FLAIR imaging suggests acknowledgement of post-contrast FLAIR as a reliable diagnostic tool for clinicians.

2.
Clin Cancer Res ; 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829906

PURPOSE: To propose a novel recursive partitioning analysis (RPA) classification model in patients with IDH-wildtype glioblastomas that incorporates the recently expanded conception of the extent of resection (EOR) in terms of both supramaximal and total resections. EXPERIMENTAL DESIGN: This multicenter cohort study included a developmental cohort of 622 patients with IDH-wildtype glioblastomas from a single institution (Severance Hospital) and validation cohorts of 536 patients from three institutions (Seoul National University Hospital, Asan Medical Center, and Heidelberg University Hospital). All patients completed standard treatment including concurrent chemoradiotherapy and underwent testing to determine their IDH mutation and MGMTp methylation status. EORs were categorized into either supramaximal, total, or non-total resections. A novel RPA model was then developed and compared to a previous RTOG RPA model. RESULTS: In the developmental cohort, the RPA model included age, MGMTp methylation status, KPS, and EOR. Younger patients with MGMTp methylation and supramaximal resections showed a more favorable prognosis (class I: median overall survival [OS] 57.3 months), while low-performing patients with non-total resections and without MGMTp methylation showed the worst prognosis (class IV: median OS 14.3 months). The prognostic significance of the RPA was subsequently confirmed in the validation cohorts, which revealed a greater separation between prognostic classes for all cohorts compared to the previous RTOG RPA model. CONCLUSIONS: The proposed RPA model highlights the impact of supramaximal versus total resections and incorporates clinical and molecular factors into survival stratification. The RPA model may improve the accuracy of assessing prognostic groups.

3.
J Neurooncol ; 168(2): 239-247, 2024 Jun.
Article En | MEDLINE | ID: mdl-38700610

PURPOSE: There is lack of comprehensive analysis evaluating the impact of clinical, molecular, imaging, and surgical data on survival of patients with gliomatosis cerebri (GC). This study aimed to investigate prognostic factors of GC in adult-type diffuse glioma patients. METHODS: Retrospective chart and imaging review was performed in 99 GC patients from adult-type diffuse glioma (among 1,211 patients; 6 oligodendroglioma, 16 IDH-mutant astrocytoma, and 77 IDH-wildtype glioblastoma) from a single institution between 2005 and 2021. Predictors of overall survival (OS) of entire patients and IDH-wildtype glioblastoma patients were determined. RESULTS: The median OS was 16.7 months (95% confidence interval [CI] 14.2-22.2) in entire patients and 14.3 months (95% CI 12.2-61.9) in IDH-wildtype glioblastoma patients. In entire patients, KPS (hazard ratio [HR] = 0.98, P = 0.004), no 1p/19q codeletion (HR = 10.75, P = 0.019), MGMTp methylation (HR = 0.54, P = 0.028), and hemorrhage (HR = 3.45, P = 0.001) were independent prognostic factors on multivariable analysis. In IDH-wildtype glioblastoma patients, KPS (HR = 2.24, P = 0.075) was the only independent prognostic factor on multivariable analysis. In subgroup of IDH-wildtype glioblastoma with CE tumors, total resection of CE tumor did not remain as a significant prognostic factor (HR = 1.13, P = 0.685). CONCLUSIONS: The prognosis of GC patients is determined by its underlying molecular type and patient performance status. Compared with diffuse glioma without GC, aggressive surgery of CE tumor in GC patients does not improve survival.


Brain Neoplasms , Isocitrate Dehydrogenase , Neoplasms, Neuroepithelial , Humans , Male , Female , Middle Aged , Prognosis , Neoplasms, Neuroepithelial/pathology , Neoplasms, Neuroepithelial/mortality , Neoplasms, Neuroepithelial/genetics , Retrospective Studies , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/diagnosis , Adult , Aged , Isocitrate Dehydrogenase/genetics , Glioma/pathology , Glioma/mortality , Glioma/genetics , Glioma/surgery , Glioma/diagnosis , Young Adult , Survival Rate , Mutation , Follow-Up Studies
4.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38675489

No standardized in vitro cell culture models for glioblastoma (GBM) have yet been established, excluding the traditional two-dimensional culture. GBM tumorspheres (TSs) have been highlighted as a good model platform for testing drug effects and characterizing specific features of GBM, but a detailed evaluation of their suitability and comparative performance is lacking. Here, we isolated GBM TSs and extracellular matrices (ECM) from tissues obtained from newly diagnosed IDH1 wild-type GBM patients and cultured GBM TSs on five different culture platforms: (1) ordinary TS culture liquid media (LM), (2) collagen-based three-dimensional (3D) matrix, (3) patient typical ECM-based 3D matrix, (4) patient tumor ECM-based 3D matrix, and (5) mouse brain. For evaluation, we obtained transcriptome data from all cultured GBM TSs using microarrays. The LM platform exhibited the most similar transcriptional program to paired tissues based on GBM genes, stemness- and invasiveness-related genes, transcription factor activity, and canonical signaling pathways. GBM TSs can be cultured via an easy-to-handle and cost- and time-efficient LM platform while preserving the transcriptional program of the originating tissues without supplementing the ECM or embedding it into the mouse brain. In addition to applications in basic cancer research, GBM TSs cultured in LM may also serve as patient avatars in drug screening and pre-clinical evaluation of targeted therapy and as standardized and clinically relevant models for precision medicine.

5.
Yonsei Med J ; 65(5): 283-292, 2024 May.
Article En | MEDLINE | ID: mdl-38653567

PURPOSE: Lower-grade gliomas of histologic grades 2 and 3 follow heterogenous clinical outcomes, which necessitates risk stratification. This study aimed to evaluate whether diffusion-weighted and perfusion-weighted MRI radiomics allow overall survival (OS) prediction in patients with lower-grade gliomas and investigate its prognostic value. MATERIALS AND METHODS: In this retrospective study, radiomic features were extracted from apparent diffusion coefficient, relative cerebral blood volume map, and Ktrans map in patients with pathologically confirmed lower-grade gliomas (January 2012-February 2019). The radiomics risk score (RRS) calculated from selected features constituted a radiomics model. Multivariable Cox regression analysis, including clinical features and RRS, was performed. The models' integrated area under the receiver operating characteristic curves (iAUCs) were compared. The radiomics model combined with clinical features was presented as a nomogram. RESULTS: The study included 129 patients (median age, 44 years; interquartile range, 37-57 years; 63 female): 90 patients for training set and 39 patients for test set. The RRS was an independent risk factor for OS with a hazard ratio of 6.01. The combined clinical and radiomics model achieved superior performance for OS prediction compared to the clinical model in both training (iAUC, 0.82 vs. 0.72, p=0.002) and test sets (0.88 vs. 0.76, p=0.04). The radiomics nomogram combined with clinical features exhibited good agreement between the actual and predicted OS with C-index of 0.83 and 0.87 in the training and test sets, respectively. CONCLUSION: Adding diffusion- and perfusion-weighted MRI radiomics to clinical features improved survival prediction in lower-grade glioma.


Brain Neoplasms , Diffusion Magnetic Resonance Imaging , Glioma , Humans , Glioma/diagnostic imaging , Glioma/mortality , Glioma/pathology , Female , Middle Aged , Male , Adult , Diffusion Magnetic Resonance Imaging/methods , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Prognosis , ROC Curve , Nomograms , Proportional Hazards Models , Neoplasm Grading , Radiomics
6.
J Neurooncol ; 166(3): 503-511, 2024 Feb.
Article En | MEDLINE | ID: mdl-38336917

BACKGROUND: The risk of recurrence is overestimated by the Kaplan-Meier method when competing events, such as death without recurrence, are present. Such overestimation can be avoided by using the Aalen-Johansen method, which is a direct extension of Kaplan-Meier that accounts for competing events. Meningiomas commonly occur in older individuals and have slow-growing properties, thereby warranting competing risk analysis. The extent to which competing events are considered in meningioma literature is unknown, and the consequences of using incorrect methodologies in meningioma recurrence risk analysis have not been investigated. METHODS: We surveyed articles indexed on PubMed since 2020 to assess the usage of competing risk analysis in recent meningioma literature. To compare recurrence risk estimates obtained through Kaplan-Meier and Aalen-Johansen methods, we applied our international database comprising ~ 8,000 patients with a primary meningioma collected from 42 institutions. RESULTS: Of 513 articles, 169 were eligible for full-text screening. There were 6,537 eligible cases from our PERNS database. The discrepancy between the results obtained by Kaplan-Meier and Aalen-Johansen was negligible among low-grade lesions and younger individuals. The discrepancy increased substantially in the patient groups associated with higher rates of competing events (older patients with high-grade lesions). CONCLUSION: The importance of considering competing events in recurrence risk analysis is poorly recognized as only 6% of the studies we surveyed employed Aalen-Johansen analyses. Consequently, most of the previous literature has overestimated the risk of recurrence. The overestimation was negligible for studies involving low-grade lesions in younger individuals; however, overestimation might have been substantial for studies on high-grade lesions.


Meningeal Neoplasms , Meningioma , Humans , Aged , Meningioma/pathology , Meningeal Neoplasms/pathology , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/pathology , Retrospective Studies , Risk Assessment
7.
Eur J Radiol ; 173: 111384, 2024 Apr.
Article En | MEDLINE | ID: mdl-38422610

PURPOSE: To compare the clinical, qualitative and quantitative imaging phenotypes, including tumor oxygenation characteristics of midline-located IDH-wildtype glioblastomas (GBMs) and H3 K27-altered diffuse midline gliomas (DMGs) in adults. METHODS: Preoperative MRI data of 55 adult patients with midline-located IDH-wildtype GBM or H3 K27-altered DMG (32 IDH-wildtype GBM and 23 H3 K27-altered DMG patients) were included. Qualitative imaging assessment was performed. Quantitative imaging assessment including the tumor volume, normalized cerebral blood volume, capillary transit time heterogeneity (CTH), oxygen extraction fraction (OEF), relative cerebral metabolic rate of oxygen values, and mean ADC value were performed from the tumor mask via automatic segmentation. Univariable and multivariable logistic analyses were performed. RESULTS: On multivariable analysis, age (odds ratio [OR] = 0.92, P = 0.015), thalamus or medulla location (OR = 10.48, P = 0.013), presence of necrosis (OR = 0.15, P = 0.038), and OEF (OR = 0.01, P = 0.042) were independent predictors to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. The area under the curve, accuracy, sensitivity, and specificity of the multivariable model were 0.88 (95 % confidence interval: 0.77-0.95), 81.8 %, 82.6 %, and 81.3 %, respectively. CONCLUSIONS: Along with younger age, tumor location, less frequent necrosis, and lower OEF may be useful imaging biomarkers to differentiate H3 K27-altered DMG from midline-located IDH-wildtype GBM. Tumor oxygenation imaging biomarkers may reflect the less hypoxic nature of H3 K27-altered DMG than IDH-wildtype GBM and may contribute to differentiation.


Brain Neoplasms , Glioblastoma , Glioma , Adult , Humans , Glioblastoma/pathology , Glioma/pathology , Brain Neoplasms/pathology , Biomarkers, Tumor/genetics , Mutation , Necrosis , Oxygen
8.
Clin Nucl Med ; 49(2): 109-115, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38049976

PURPOSE: 11 C-acetate (ACE) PET/CT visualizes reactive astrogliosis in tumor microenvironment. This study compared 11 C-ACE and 11 C-methionine (MET) PET/CT for glioma classification and predicting patient survival. PATIENTS AND METHODS: In this prospective study, a total of 142 patients with cerebral gliomas underwent preoperative MRI, 11 C-MET PET/CT, and 11 C-ACE PET/CT. Tumor-to-contralateral cortex (TNR MET ) and tumor-to-choroid plexus ratios (TNR ACE ) were calculated for 11 C-MET and 11 C-ACE. The Kruskal-Wallis test and Bonferroni post hoc analysis were used to compare the differences in 11 C-TNR MET and 11 C-TNR ACE . The Cox proportional hazards regression analysis and classification and regression tree models were used to assess progression-free survival (PFS) and overall survival (OS). RESULTS: The median 11 C-TNR MET and 11 C-TNR ACE for oligodendrogliomas (ODs), IDH1 -mutant astrocytomas, IDH1 -wildtype astrocytomas, and glioblastomas were 2.75, 1.40, 2.30, and 3.70, respectively, and 1.40, 1.20, 1.77, and 2.87, respectively. The median 11 C-TNR MET was significantly different among the groups, except between ODs and IDH1 -wildtype astrocytomas, whereas the median 11 C-TNR ACE was significantly different among all groups. The classification and regression tree model identified 4 risk groups ( IDH1 -mutant with 11 C-TNR ACE ≤ 1.4, IDH1 -mutant with 11 C-TNR ACE > 1.4, IDH1 -wildtype with 11 C-TNR ACE ≤ 1.8, and IDH1 -wildtype with 11 C-TNR ACE > 1.8), with median PFS of 52.7, 44.5, 25.9, and 8.9 months, respectively. Using a 11 C-TNR ACE cutoff of 1.4 for IDH1 -mutant gliomas and a 11 C-TNR ACE cutoff of 2.0 for IDH1 -wildtype gliomas, all gliomas were divided into 4 groups with median OS of 52.7, 46.8, 27.6, and 12.0 months, respectively. Significant differences in PFS and OS were observed among the 4 groups after correcting for multiple comparisons. CONCLUSIONS: 11 C-ACE PET/CT is better for glioma classification and survival prediction than 11 C-MET PET/CT, highlighting its potential role in cerebral glioma patients.


Astrocytoma , Brain Neoplasms , Glioma , Humans , Positron Emission Tomography Computed Tomography , Methionine , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Gliosis , Prospective Studies , Glioma/diagnostic imaging , Glioma/pathology , Racemethionine , Inflammation , Acetates , Prognosis , Mutation , Tumor Microenvironment
9.
Eur Radiol ; 34(2): 1376-1387, 2024 Feb.
Article En | MEDLINE | ID: mdl-37608093

OBJECTIVES: Extent of resection (EOR) of contrast-enhancing (CE) and non-enhancing (NE) tumors may have different impacts on survival according to types of adult-type diffuse gliomas in the molecular era. This study aimed to evaluate the impact of EOR of CE and NE tumors in glioma according to the 2021 World Health Organization classification. METHODS: This retrospective study included 1193 adult-type diffuse glioma patients diagnosed between 2001 and 2021 (183 oligodendroglioma, 211 isocitrate dehydrogenase [IDH]-mutant astrocytoma, and 799 IDH-wildtype glioblastoma patients) from a single institution. Patients had complete information on IDH mutation, 1p/19q codeletion, and O6-methylguanine-methyltransferase (MGMT) status. Cox survival analyses were performed within each glioma type to assess predictors of overall survival, including clinical, imaging data, histological grade, MGMT status, adjuvant treatment, and EOR of CE and NE tumors. Subgroup analyses were performed in patients with CE tumor. RESULTS: Among 1193 patients, 935 (78.4%) patients had CE tumors. In entire oligodendrogliomas, gross total resection (GTR) of NE tumor was not associated with survival (HR = 0.56, p = 0.223). In 86 (47.0%) oligodendroglioma patients with CE tumor, GTR of CE tumor was the only independent predictor of survival (HR = 0.16, p = 0.004) in multivariable analysis. GTR of CE and NE tumors was independently associated with better survival in IDH-mutant astrocytoma and IDH-wildtype glioblastoma (all ps < 0.05). CONCLUSIONS: GTR of both CE and NE tumors may significantly improve survival within IDH-mutant astrocytomas and IDH-wildtype glioblastomas. In oligodendrogliomas, the EOR of CE tumor may be crucial in survival; aggressive GTR of NE tumor may be unnecessary, whereas GTR of the CE tumor is recommended. CLINICAL RELEVANCE STATEMENT: Surgical strategies on contrast-enhancing (CE) and non-enhancing (NE) tumors should be reassessed considering the different survival outcomes after gross total resection depending on CE and NE tumors in the 2021 World Health Organization classification of adult-type diffuse gliomas. KEY POINTS: The survival impact of extent of resection of contrast-enhancing (CE) and non-enhancing (NE) tumors was evaluated in adult-type diffuse gliomas. Gross total resection of both CE and NE tumors may improve survival in isocitrate dehydrogenase (IDH)-mutant astrocytomas and IDH-wildtype glioblastomas, while only gross total resection of the CE tumor improves survival in oligodendrogliomas. Surgical strategies should be reconsidered according to types in adult-type diffuse gliomas.


Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Oligodendroglioma , Humans , Adult , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Retrospective Studies , Isocitrate Dehydrogenase/genetics , Glioma/diagnostic imaging , Glioma/genetics , Glioma/surgery , Mutation , World Health Organization
10.
Yonsei Med J ; 65(1): 1-9, 2024 Jan.
Article En | MEDLINE | ID: mdl-38154474

PURPOSE: Surgery, radiotherapy (RT), and chemotherapy have prolonged the survival of patients with anaplastic oligodendroglioma. However, whether RT induces long-term toxicity remains unknown. We analyzed the relationship between the RT dose to the fornix and symptomatic radiation necrosis (SRN). MATERIALS AND METHODS: A total of 67 patients treated between 2009 and 2019 were analyzed. SRN was defined according to the following three criteria: 1) radiographic findings, 2) symptoms attributable to the lesion, and 3) treatment resulting in symptom improvement. Various contours, including the fornix, were delineated. Univariate and multivariate analyses of the relationship between RT dose and SRN, as well as receiver operating characteristic curve analysis for cut-off values, were performed. RESULTS: The most common location was the frontal lobe (n=40, 60%). Gross total resection was performed in 38 patients (57%), and 42 patients (63%) received procarbazine, lomustine, and vincristine chemotherapy. With a median follow-up of 42 months, the median overall and progression-free survival was 74 months. Sixteen patients (24%) developed SRN. In multivariate analysis, age and maximum dose to the fornix were associated with the development of SRN. The cut-off values for the maximum dose to the fornix and age were 59 Gy (equivalent dose delivered in 2 Gy fractions) and 46 years, respectively. The rate of SRN was higher in patients whose maximum dose to the fornix was >59 Gy (13% vs. 43%, p=0.005). CONCLUSION: The maximum dose to the fornix was a significant factor for SRN development. While fornix sparing may help maintain neurocognitive function, additional studies are needed.


Brain Neoplasms , Oligodendroglioma , Humans , Oligodendroglioma/drug therapy , Oligodendroglioma/radiotherapy , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Vincristine/adverse effects , Radiation Dosage , Necrosis/chemically induced , Necrosis/drug therapy
11.
Neuro Oncol ; 2023 Dec 12.
Article En | MEDLINE | ID: mdl-38085571

BACKGROUND: Reactive astrogliosis is a hallmark of various brain pathologies, including neurodegenerative diseases and glioblastomas. However, the specific intermediate metabolites contributing to reactive astrogliosis remain unknown. This study investigated how glioblastomas induce reactive astrogliosis in the neighboring microenvironment and explores 11C-acetate PET as an imaging technique for detecting reactive astrogliosis. METHODS: Through in vitro, mouse models, and human tissue experiments, we examined the association between elevated 11C-acetate uptake and reactive astrogliosis in gliomas. We explored acetate from glioblastoma cells, which triggers reactive astrogliosis in neighboring astrocytes by upregulating MAO-B and MCT1 expression. We evaluated the presence of cancer stem cells in the reactive astrogliosis region of glioblastomas and assessed the correlation between the volume of 11C-acetate uptake beyond MRI and prognosis. RESULTS: Elevated 11C-acetate uptake is associated with reactive astrogliosis and astrocytic MCT1 in the periphery of glioblastomas in human tissues and mouse models. Glioblastoma cells exhibit increased acetate production as a result of glucose metabolism, with subsequent secretion of acetate. Acetate derived from glioblastoma cells induces reactive astrogliosis in neighboring astrocytes by increasing the expression of MAO-B and MCT1. We found cancer stem cells within the reactive astrogliosis at the tumor periphery. Consequently, a larger volume of 11C-acetate uptake beyond contrast-enhanced MRI was associated with worse prognosis. CONCLUSION: Our results highlight the role of acetate derived from glioblastoma cells in inducing reactive astrogliosis and underscore the potential value of 11C-acetate PET as an imaging technique for detecting reactive astrogliosis, offering important implications for the diagnosis and treatment of glioblastomas.

13.
J Neurooncol ; 165(2): 261-268, 2023 Nov.
Article En | MEDLINE | ID: mdl-37861921

BACKGROUND: The standard of care for glioblastoma multiforme (GBM) is maximal surgical resection followed by conventional fractionated concurrent chemoradiotherapy (CCRT) with a total dose of 60 Gy. However, there is currently no consensus on the optimal boost technique for CCRT in GBM. METHODS: We conducted a retrospective review of 398 patients treated with CCRT between 2016 and 2021, using data from two institutional databases. Patients were divided into two groups: those receiving sequential boost (SEB, N = 119) and those receiving simultaneous integrated boost (SIB, N = 279). The primary endpoint was overall survival (OS). To minimize differences between the SIB and SEB groups, we conducted propensity score matching (PSM) analysis. RESULTS: The median follow-up period was 18.6 months. Before PSM, SEB showed better OS compared to SIB (2-year, 55.6% vs. 44.5%, p = 0.014). However, after PSM, there was no significant difference between two groups (2-year, 55.6% vs. 51.5%, p = 0.300). The boost sequence was not associated with inferior OS before and after PSM (all p-values > 0.05). Additionally, the rates of symptomatic pseudo-progression were similar between the two groups (odds ratio: 1.75, p = 0.055). CONCLUSIONS: This study found no significant difference in OS between SEB and SIB for GBM patients treated with CCRT. Further research is needed to validate these findings and to determine the optimal boost techniques for this patient population.


Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/therapy , Glioblastoma/drug therapy , Chemoradiotherapy/methods , Retrospective Studies , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy
14.
J Neurooncol ; 164(2): 341-351, 2023 Sep.
Article En | MEDLINE | ID: mdl-37689596

PURPOSE: To develop and validate a dynamic contrast-enhanced (DCE) MRI-based radiomics model to predict epidermal growth factor receptor (EGFR) amplification in patients with glioblastoma, isocitrate dehydrogenase (IDH) wildtype. METHODS: Patients with pathologically confirmed glioblastoma, IDH wildtype, from January 2015 to December 2020, with an EGFR amplification status, were included. Patients who did not undergo DCE or conventional brain MRI were excluded. Patients were categorized into training and test sets by a ratio of 7:3. DCE MRI data were used to generate volume transfer constant (Ktrans) and extracellular volume fraction (Ve) maps. Ktrans, Ve, and conventional MRI were then used to extract the radiomics features, from which the prediction models for EGFR amplification status were developed and validated. RESULTS: A total of 190 patients (mean age, 59.9; male, 55.3%), divided into training (n = 133) and test (n = 57) sets, were enrolled. In the test set, the radiomics model using the Ktrans map exhibited the highest area under the receiver operating characteristic curve (AUROC), 0.80 (95% confidence interval [CI], 0.65-0.95). The AUROC for the Ve map-based and conventional MRI-based models were 0.74 (95% CI, 0.58-0.90) and 0.76 (95% CI, 0.61-0.91). CONCLUSION: The DCE MRI-based radiomics model that predicts EGFR amplification in glioblastoma, IDH wildtype, was developed and validated. The MRI-based radiomics model using the Ktrans map has higher AUROC than conventional MRI.


Brain Neoplasms , Glioblastoma , Humans , Male , Middle Aged , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Magnetic Resonance Imaging , ErbB Receptors/genetics , Retrospective Studies
15.
J Magn Reson Imaging ; 58(6): 1680-1702, 2023 12.
Article En | MEDLINE | ID: mdl-37715567

The fifth edition of the World Health Organization classification of central nervous system tumors published in 2021 reflects the current transitional state between traditional classification system based on histopathology and the state-of-the-art molecular diagnostics. This Part 3 Review focuses on the molecular diagnostics and imaging findings of glioneuronal and neuronal tumors. Histological and molecular features in glioneuronal and neuronal tumors often overlap with pediatric-type diffuse low-grade gliomas and circumscribed astrocytic gliomas (discussed in the Part 2 Review). Due to this overlap, in several tumor types of glioneuronal and neuronal tumors the diagnosis may be inconclusive with histopathology and genetic alterations, and imaging features may be helpful to distinguish difficult cases. Thus, it is crucial for radiologists to understand the underlying molecular diagnostics as well as imaging findings for application on clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Astrocytoma , Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Humans , Child , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Glioma/diagnostic imaging , Glioma/genetics , World Health Organization
16.
Br J Cancer ; 129(7): 1061-1070, 2023 10.
Article En | MEDLINE | ID: mdl-37558923

BACKGROUND: Glioblastoma (GBM), one of the most lethal tumors, exhibits a highly infiltrative phenotype. Here, we identified transcription factors (TFs) that collectively modulate invasion-related genes in GBM. METHODS: The invasiveness of tumorspheres (TSs) were quantified using collagen-based 3D invasion assays. TF activities were quantified by enrichment analysis using GBM transcriptome, and confirmed by cell-magnified analysis of proteome imaging. Invasion-associated TFs were knocked down using siRNA or shRNA, and TSs were orthotopically implanted into mice. RESULTS: After classifying 23 patient-derived GBM TSs into low- and high-invasion groups, we identified active TFs in each group-PCBP1 for low invasion, and STAT3 and SRF for high invasion. Knockdown of these TFs reversed the phenotype and invasion-associated-marker expression of GBM TSs. Notably, MRI revealed consistent patterns of invasiveness between TSs and the originating tumors, with an association between high invasiveness and poor prognosis. Compared to controls, mice implanted with STAT3- or SRF-downregulated GBM TSs showed reduced normal tissue infiltration and tumor growth, and prolonged survival, indicating a therapeutic response. CONCLUSIONS: Our integrative transcriptome analysis revealed three invasion-associated TFs in GBM. Based on the relationship among the transcriptional program, invasive phenotype, and prognosis, we suggest these TFs as potential targets for GBM therapy.


Brain Neoplasms , Glioblastoma , Animals , Humans , Mice , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , Gene Expression Profiling , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/drug therapy , Neoplasm Invasiveness/pathology , Prognosis , RNA, Small Interfering , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
17.
Biomater Res ; 27(1): 71, 2023 Jul 19.
Article En | MEDLINE | ID: mdl-37468961

BACKGROUND: Glial scar formation is a reactive glial response confining injured regions in a central nervous system. However, it remains challenging to identify key factors formulating glial scar in response to glioblastoma (GBM) due to complex glia-GBM crosstalk. METHODS: Here, we constructed an astrocytic scar enclosing GBM in a human assembloid and a mouse xenograft model. GBM spheroids were preformed and then co-cultured with microglia and astrocytes in 3D Matrigel. For the xenograft model, U87-MG cells were subcutaneously injected to the Balb/C nude female mice. RESULTS: Additional glutamate was released from GBM-microglia assembloid by 3.2-folds compared to GBM alone. The glutamate upregulated astrocytic monoamine oxidase-B (MAO-B) activity and chondroitin sulfate proteoglycans (CSPGs) deposition, forming the astrocytic scar and restricting GBM growth. Attenuating scar formation by the glutamate-MAO-B inhibition increased drug penetration into GBM assembloid, while reducing GBM confinement. CONCLUSIONS: Taken together, our study suggests that astrocytic scar could be a critical modulator in GBM therapeutics.

18.
Discov Oncol ; 14(1): 90, 2023 Jun 06.
Article En | MEDLINE | ID: mdl-37278858

PURPOSE: Glioblastoma (GBM) has a poor prognosis after standard treatment. Recently, metformin has been shown to have an antitumor effect on glioma cells. We performed the first randomized prospective phase II clinical trial to investigate the clinical efficacy and safety of metformin in patients with recurrent or refractory GBM treated with low-dose temozolomide. METHODS: Included patients were randomly assigned to a control group [placebo plus low-dose temozolomide (50 mg/m2, daily)] or an experimental group [metformin (1000 mg, 1500 mg, and 2000 mg per day during the 1st, 2nd, and 3rd week until disease progression, respectively) plus low-dose temozolomide]. The primary endpoint was progression-free survival (PFS). Secondary endpoints were overall survival (OS), disease control rate, overall response rate, health-related quality of life, and safety. RESULTS: Among the 92 patients screened, 81 were randomly assigned to the control group (43 patients) or the experimental group (38 patients). Although the control group showed a longer median PFS, the difference between the two groups was not statistically significant (2.66 versus 2.3 months, p = 0.679). The median OS was 17.22 months (95% CI 12.19-21.68 months) in the experimental group and 7.69 months (95% CI 5.16-22.67 months) in the control group, showing no significant difference by the log-rank test (HR: 0.78; 95% CI 0.39-1.58; p = 0.473). The overall response rate and disease control rate were 9.3% and 46.5% in the control group and 5.3% and 47.4% in the experimental group, respectively. CONCLUSIONS: Although the metformin plus temozolomide regimen was well tolerated, it did not confer a clinical benefit in patients with recurrent or refractory GBM. Trial registration NCT03243851, registered August 4, 2017.

19.
J Korean Neurosurg Soc ; 66(3): 308-315, 2023 May.
Article En | MEDLINE | ID: mdl-37042171

Recent updates in genomic-integrated glioma classification have caused confusion in current clinical practice, as management protocols and health insurance systems are based on evidence from previous diagnostic classifications. The Korean Brain Tumor Society conducted an electronic questionnaire for society members, asking for their ideas on risk group categorization and preferred treatment for each individual diagnosis listed in the new World Health Organization (WHO) classification of gliomas. Additionally, the current off-label drug use (OLDU) protocols for glioma management approved by the Health Insurance Review and Assessment Service (HIRA) in Korea were investigated. A total of 24 responses were collected from 20 major institutes in Korea. A consensus was reached on the dichotomic definition of risk groups for glioma prognosis, using age, performance status, and extent of resection. In selecting management protocols, there was general consistency in decisions according to the WHO grade and the risk group, regardless of the individual diagnosis. As of December 2022, there were 22 OLDU protocols available for the management of gliomas in Korea. The consensus and available options described in this report will be temporarily helpful until there is an accumulation of evidence for effective management under the new classification system for gliomas.

20.
J Magn Reson Imaging ; 58(3): 690-708, 2023 09.
Article En | MEDLINE | ID: mdl-37069764

The fifth edition of the World Health Organization (WHO) classification of central nervous system tumors published in 2021 advances the role of molecular diagnostics in the classification of gliomas by emphasizing integrated diagnoses based on histopathology and molecular information and grouping tumors based on genetic alterations. This Part 2 review focuses on the molecular diagnostics and imaging findings of pediatric-type diffuse high-grade gliomas, pediatric-type diffuse low-grade gliomas, and circumscribed astrocytic gliomas. Each tumor type in pediatric-type diffuse high-grade glioma mostly harbors a distinct molecular marker. On the other hand, in pediatric-type diffuse low-grade gliomas and circumscribed astrocytic gliomas, molecular diagnostics may be extremely complicated at a glance in the 2021 WHO classification. It is crucial for radiologists to understand the molecular diagnostics and imaging findings and leverage the knowledge in clinical practice. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.


Astrocytoma , Brain Neoplasms , Central Nervous System Neoplasms , Glioma , Humans , Child , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Glioma/diagnostic imaging , Glioma/genetics , Astrocytoma/diagnostic imaging , Mutation , World Health Organization
...