Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38931180

ABSTRACT

The relationship between maternal oxidative balance score (OBS) in pregnancy, representing overall oxidative balance status by integrating dietary and lifestyle factors, and congenital heart defects (CHD) remains unclear; therefore, this study attempted to explore their associations among the Chinese population. We conducted a case-control study including 474 cases and 948 controls in Northwest China. Pregnant women were interviewed to report diets and lifestyles in pregnancy by structured questionnaires. Logistic regression models were used to estimate the adjusted ORs (95%CIs). Maternal OBS ranged from 6 to 34 among cases, and 5 to 37 among controls. Comparing the highest with the lowest tertile group, the adjusted OR for CHD was 0.31 (0.19-0.50). The CHD risk was reduced by 7% (OR = 0.93, 95%CI = 0.90-0.95) in association with per 1 higher score of OBS during pregnancy. The inverse relationship between maternal OBS and CHD risk appeared to be more pronounced among participants in urban areas (OR = 0.89, 95%CI = 0.86-0.93). Maternal OBS during pregnancy showed good predictive values for fetal CHD, with the areas under the receiver operating characteristic curve 0.78 (0.76-0.81). These findings highlighted the importance of reducing oxidative stress through antioxidant-rich diets and healthy lifestyles among pregnant women to prevent fetal CHD.


Subject(s)
Heart Defects, Congenital , Oxidative Stress , Humans , Female , Pregnancy , Heart Defects, Congenital/epidemiology , Adult , Case-Control Studies , China/epidemiology , Diet/statistics & numerical data , Risk Factors , Life Style , Maternal Nutritional Physiological Phenomena , Logistic Models , Antioxidants/analysis , Antioxidants/administration & dosage , Surveys and Questionnaires
2.
Molecules ; 29(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38675603

ABSTRACT

Due to boron's metalloid properties, aromatic boron reagents are prevalent synthetic intermediates. The direct borylation of aryl C-H bonds for producing aromatic boron compounds offers an appealing, one-step solution. Despite significant advances in this field, achieving regioselective aryl C-H bond borylation using simple and readily available starting materials still remains a challenge. In this work, we attempted to enhance the reactivity of the electron-donor-acceptor (EDA) complex by selecting different bases to replace the organic base (NEt3) used in our previous research. To our delight, when using NH4HCO3 as the base, we have achieved a mild visible-light-mediated aromatic C-H bond borylation reaction with exceptional regioselectivity (rr > 40:1 to single isomers). Compared with our previous borylation methodologies, this protocol provides a more efficient and broader scope for aryl C-H bond borylation through the use of N-Bromosuccinimide. The protocol's good functional-group tolerance and excellent regioselectivity enable the functionalization of a variety of biologically relevant compounds and novel cascade transformations. Mechanistic experiments and theoretical calculations conducted in this study have indicated that, for certain arenes, the aryl C-H bond borylation might proceed through a new reaction mechanism, which involves the formation of a novel transient EDA complex.

3.
CNS Neurosci Ther ; 30(2): e14406, 2024 02.
Article in English | MEDLINE | ID: mdl-37577850

ABSTRACT

BACKGROUND: Patients undergoing surgical anesthesia increasingly suffer from preoperative depression. Clinical studies have shown that depression is a risk factor for perioperative neurocognitive disorders (PNDs) in elder patients. However, the underlying mechanism, especially at the neural circuit level, remains poorly understood. METHODS: Right carotid artery separation under sevoflurane and chronic social defeat stress (CSDS) in adult mice were used to establish surgical anesthesia and chronic depression models. Cognitive function was assessed by the Y maze and novel object recognition tests. A chemogenetic approach was used to modulate the locus coeruleus-dorsal hippocampal CA1 (LC-dCA1) circuit. Hippocampal synaptic alterations were evaluated by Golgi staining and whole-cell patch clamp recording. RESULTS: We found that CSDS induced synaptic impairments in dorsal hippocampal CA1 pyramidal neurons and cognitive deficits in adult mice after surgery under sevoflurane. Chemogenetic activation of the LC-dCA1 pathway significantly alleviated the CSDS-induced synaptic impairments and cognitive dysfunction. On the contrary, inhibition of this pathway could mimic CSDS-induced deficits. Furthermore, we showed that dopamine played an important role in CSDS-induced PNDs in adult mice after surgery/sevoflurane. CONCLUSION: Overall, our results have demonstrated a vital role for the LC-dCA1 pathway in CSDS-induced PNDs in adult mice undergoing surgery with sevoflurane anesthesia.


Subject(s)
Depression , Locus Coeruleus , Mice , Humans , Animals , Aged , Sevoflurane/pharmacology , Hippocampus , Neurocognitive Disorders , Mice, Inbred C57BL
4.
Bioorg Med Chem Lett ; 95: 129470, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37689215

ABSTRACT

7-substituted tetrahydroisoquinolines derivatives were designed, synthesized, and evaluated for neuroprotective properties. We summarized the preliminary structure activity relationships (SAR). Compound 3i was screened as a hit compound and its antidepressant activity was evaluated by employing the forced swimming test, tail suspension test. Additionally, ADMET profile (absorption, distribution, metabolism, excretion and toxicity properties) of the compound 3i was predicted in order to evaluate their lead-like properties and safety. The interaction of compound 3i bound to MAO-A was explored using molecular docking and molecular dynamics simulation. Results of biological studies revealed that the compound 3i exhibited almost equal antidepressant activity compared with magnoflorine. Compound 3i is predicted to possess good drug like properties and safety based on ADMET profile predictions. This work provides ideas for the drugs discovery of antidepressant agents.


Subject(s)
Antidepressive Agents , Tetrahydroisoquinolines , Molecular Docking Simulation , Swimming , Structure-Activity Relationship
5.
Nutrients ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242143

ABSTRACT

The relationship between diet-related inflammation during pregnancy and congenital heart defects (CHD) is unclear. This study attempted to investigate the association between the dietary inflammation index (DII) during pregnancy, reflecting the overall inflammatory potential of the maternal diet, and CHD in Northwest China. A case-control study with 474 cases and 948 controls was performed in Xi'an City, China. Eligible women awaiting delivery were recruited, and their dietary and other information during pregnancy was collected. Logistic regression models were applied to estimate the risk of CHD in association with DII. The maternal DII ranged from -1.36 to 5.73 in cases, and 0.43 to 5.63 in controls. Pregnant women with per 1 higher DII score were at 31% higher risk of fetal CHD (OR = 1.31, 95%CI = 1.14-1.51), and the adjusted OR (95%CI) comparing the pro-inflammatory diet group with the anti-inflammatory diet group was 2.04 (1.42-2.92). The inverse association of maternal DII score with CHD risk was consistent across various subgroups of maternal characteristics. Maternal DII in pregnancy had good predictive value for CHD in offspring, with the areas under the receiver operating characteristic curve higher than 0.7. These findings suggested that avoiding a pro-inflammatory diet in pregnancy should be emphasized in the prevention of CHD.


Subject(s)
Diet , Heart Defects, Congenital , Humans , Female , Pregnancy , Case-Control Studies , Diet/adverse effects , Inflammation/complications , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/complications , Data Collection , Risk Factors
6.
Front Genet ; 14: 1092066, 2023.
Article in English | MEDLINE | ID: mdl-37113996

ABSTRACT

Extreme environmental conditions are a major challenge for livestock production. Changes in climate conditions, especially those that lead to extreme weather, can reduce livestock production. The screening of genes and molecular markers is of great significance to explore the genetic mechanism of sheep prolificacy traits in Taklimakan Desert environment. We selected healthy adult Pishan Red Sheep (PRS) and Qira Black Sheep (QR) which live in Taklimakan Desert environment, collected blood from jugular vein, extracted DNA, and prepared Illumina Ovine SNP50 chip. For PRS, linkage disequilibrium (LD) was calculated using the ovine SNP50 Beadchip and the effective population size (Ne) was estimated using SMC++. The genetic characteristics of PRS were analyzed by integrated haplotype score (iHS) and fixation index (F ST ). The result showed that r 2 of PRS was 0.233 ± 0.280 in the range of 0-10 Kb and decreased with increasing distances. SMC++ tested that the Ne of PRS remained at 236.99 in recent generations. 184 genes were screened out under iHS 1% threshold, and 1148 genes were screened out with F ST under the 5% threshold, and 29 genes were obtained from the intersection of the two gene sets. In this study, the genetic characteristics of PRS and QR were compared by ovine genome chip, and the related excellent genes were searched, providing reference for the protection of sheep germplasm resources and molecular breeding in a desert environment.

7.
PLoS One ; 18(3): e0283383, 2023.
Article in English | MEDLINE | ID: mdl-36952432

ABSTRACT

Growth traits are quantitative traits controlled by multiple micro-effect genes. we identified molecular markers related to sheep growth traits, which formed the basis of molecular breeding. In this study, we randomly selected 100 Qira Black sheep and 84 German Merino sheep for the blood collection the jugular vein to genotype by using the Illumina Ovine SNP 50K Bead Chip. quality control criteria for statistical analysis were: rejection detection rate < 90% and minimum allele frequency (MAF) < 5%. Then, we performed Genome-wide association studies (GWAS) on sheep body weight, body height, body length, and chest circumference using mixed linear models. After getting 55 SNPs with significant correlation, they were annotated by reference genome of Ovis aries genome (Oar_v4.0) and We obtained a total of 84 candidate genes associated with production traits (BMPR1B, HSD17B3, TMEM63C, etc.). We selected BMPR1B for population validation and found a correlation between the FecB locus and body weight traits. Therefore, this study not only supplements the existing knowledge of molecular markers of sheep growth traits, but also has important theoretical significance and reference value for the mining of functional genes of sheep growth traits.


Subject(s)
Genome-Wide Association Study , Genome , Animals , Sheep/genetics , Genome-Wide Association Study/veterinary , Phenotype , Genotype , Body Weight/genetics , Polymorphism, Single Nucleotide , Sheep, Domestic/genetics
8.
Nutrients ; 14(17)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36079912

ABSTRACT

Limited studies on maternal dietary quality indices and congenital heart defects (CHD) are available. This study aimed to explore the relationship between dietary quality in pregnancy and CHD among the Chinese population. A case-control study was performed in Northwest China, and 474 cases and 948 controls were included. Eligible women waiting for delivery were interviewed to recall diets and other information during pregnancy. Dietary quality was assessed by the Global Diet Quality Score (GDQS) and Mediterranean Diet Score (MDS). Logistic regression models were adopted to evaluate the associations of dietary quality scores with CHD. Pregnant women with higher scores of GDQS and MDS were at a lower risk of fetal CHD, and the adjusted ORs comparing the extreme quartiles were 0.26 (95%CI: 0.16−0.42; Ptrend < 0.001) and 0.53 (95%CI: 0.34−0.83; Ptrend = 0.007), respectively. The inverse associations of GDQS and MDS with CHD appeared to be stronger among women with lower education levels or in rural areas. Maternal GDQS and MDS had good predictive values for fetal CHD, with the areas under the receiver operating characteristic curves close to 0.8. Efforts to improve maternal dietary quality need to be strengthened to decrease the prevalence of CHD among the Chinese population.


Subject(s)
Diet, Mediterranean , Heart Defects, Congenital , Case-Control Studies , Female , Heart Defects, Congenital/epidemiology , Humans , Logistic Models , Pregnancy , Pregnant Women
9.
Nutr Metab (Lond) ; 19(1): 43, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790993

ABSTRACT

BACKGROUND: Previous studies have yielded inconsistent results on the association between maternal dietary protein intake and birth weight. Moreover, little is known about the effects of dietary protein intake from different sources on fetal growth. This study aimed to investigate the associations of different dietary protein sources (total protein, animal protein, plant protein, and major dietary protein sources) during pregnancy with birth weight and the related adverse birth outcomes. METHODS: 7310 women were recruited using a stratified multistage random sampling method at 0-12 months (median: 3; 10-90th percentile: 0-7) after delivery in Shaanxi, China. Maternal diets were gathered by a validated FFQ and other characteristics were collected by a standard questionnaire. Multilevel linear or logistic regression models were used to estimate birth weight changes or ORs (95% CIs) for adverse birth outcomes associated with different dietary protein sources during pregnancy. RESULTS: The mean percentage of energy from total protein was 11.4% (SD 2.2), with only 27.4% of total protein derived from animal protein. Per 3% increase in energy from total protein, animal protein, and dairy protein was associated with birth weight increases of 19.4 g (95% CI 6.0-32.9), 20.6 g (4.8-36.5), and 18.2 g (4.7-31.7), respectively. Per 3% increase in energy from total protein, animal protein, and dairy protein was also associated with lower risks of low birth weight (LBW) (total protein: OR = 0.78, 95% CI 0.64-0.94; animal protein: 0.79, 0.65-0.96; dairy protein: 0.71, 0.56-0.91), small for gestational age (SGA) (total protein: 0.88, 0.79-0.98; animal protein: 0.87, 0.78-0.97; dairy protein: 0.81, 0.68-0.96), and intrauterine growth retardation (IUGR) (total protein: 0.84, 0.72-0.98; animal protein: 0.86, 0.75-0.98; dairy protein: 0.78, 0.66-0.92). We observed no associations of plant protein and other major dietary protein sources with birth weight and the above birth outcomes. The results did not change when maternal protein was substituted for fat or carbohydrate. CONCLUSIONS: Among Chinese pregnant women with low intake of protein, higher intake of dietary protein, in particular animal protein and dairy protein, is associated with higher birth weight and lower risks of LBW, SGA, and IUGR.

10.
Sci Rep ; 12(1): 12264, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851076

ABSTRACT

The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.


Subject(s)
Genomics , Polymorphism, Single Nucleotide , Animals , Female , Haplotypes , Homozygote , Linkage Disequilibrium , Mammals , Sheep/genetics
11.
Article in English | MEDLINE | ID: mdl-35469157

ABSTRACT

Context. Ziziphi Spinosae Semen (ZSS) is a well-known Chinese herbal medicine used in the treatment of depression and anxiety in China. ZSS contains several active components, such as alkaloids, saponins, and flavonoids. Objective. This study aimed to explore the synergistic effect of alkaloids and saponins from ZSS in alleviating depression in a mouse model. Materials and Methods. Modeling depression with chronic unpredictable stimuli. Pharmacodynamic methods (tail suspension test and forced swimming test) were used to evaluate the antidepressant effects of alkaloids, saponins, and combinations thereof from ZSS. The mechanisms underlying the effect were examined by measuring the levels of monoamine neurotransmitters in the hippocampus and frontal cortex of mice. Results. Compared with the model group, alkaloids therapy (AZSS), saponins therapy (SZSS), and combination therapy significantly reduced the immobility time in behavioral tests (P < 0.05). The contents of noradrenaline (NE), dopamine (DA), and serotonin (5-HT) in the hippocampus and frontal cortex of depressed mice were increased in the drug treatment groups, especially in the combination group, which increased by 14.65%, 87.72%, 33.44%, 25.64%, 25.39%, and 70.78%, respectively. Several groups showed better results (P < 0.05), especially the combination of alkaloids and saponins. Discussion and Conclusion. The saponins and alkaloids from ZSS exhibited a synergistic effect in improving the behavior of depressed mice. More importantly, the combination of alkaloids (15 mg·kg-1) and saponins (110 mg·kg-1) was effective in alleviating depression in mice, especially in terms of changing the level of DA in the hippocampus.

12.
Nutrients ; 14(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35268030

ABSTRACT

The effects of zinc, copper, and selenium on human congenital heart defects (CHDs) remain unclear. This study aimed to investigate the associations of the maternal total, dietary, and supplemental intakes of zinc, copper, and selenium during pregnancy with CHDs. A hospital-based case-control study was performed, including 474 cases and 948 controls in Northwest China. Eligible participants waiting for delivery were interviewed to report their diets and characteristics in pregnancy. Mixed logistic regression was adopted to examine associations and interactions between maternal intakes and CHDs. Higher total intakes of zinc, selenium, zinc to copper ratio, and selenium to copper ratio during pregnancy were associated with lower risks of total CHDs and the subtypes, and the tests for trend were significant (all p < 0.05). The significantly inverse associations with CHDs were also observed for dietary intakes of zinc, selenium, zinc to copper ratio, selenium to copper ratio, and zinc and selenium supplements use during pregnancy and in the first trimester. Moreover, high zinc and high selenium, even with low or high copper, showed a significantly reduced risk of total CHDs. Efforts to promote zinc and selenium intakes during pregnancy need to be strengthened to reduce the incidence of CHDs in the Chinese population.


Subject(s)
Heart Defects, Congenital , Selenium , Case-Control Studies , Copper , Female , Heart Defects, Congenital/epidemiology , Humans , Pregnancy , Zinc
13.
ACS Appl Mater Interfaces ; 14(4): 5149-5158, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35041389

ABSTRACT

Indium doping of cadmium sulfide (CdS) by chemical bath deposition (CBD) can be an efficient strategy to boost the CIGSSe efficiency. However, limited by the extremely low solubility of In2S3, it is difficult to increase the In doping contents and inhibit the band energy-level regulation for CdS through the traditional CBD process. In this work, we perform a novel CBD method to prepare an indium-doped CdS (In:CdS) buffer, in which the indium source is sequentially slowly added in the growing aqueous solution. In this process, the In ion concentration involved in the real-time deposition is significantly reduced. Thus, compact and uniform In:CdS with higher indium doping content is obtained. Indium doping can elevate the CdS conduction band edge and construct a more favorable spike band alignment with a CIGSSe absorber. Moreover, it introduces efficient carrier transport and reduced interface defect density. As a result, improved CIGSSe heterojunction quality is realized by utilizing In:CdS. Also, the solution-processed CIGSSe device with In:CdS as a buffer yields a high efficiency of 16.4%, with a high VOC of 670 mV and an FF of 75.3%.

14.
J Hazard Mater ; 426: 127796, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34802821

ABSTRACT

In this study, two environmentally-friendly macroscopically formal (PVF) composited sponges (PL and PLS) functionalized with lignin and lignosulfonate, respectively, were fabricated by a one-step mechanical foaming method. PLS, obtained with the fed mass ratio of 0.3:1 lignosulfonate to PVF in the preparation process, possessed a large specific surface area of approximately 22.396 m2/g, a three-dimensional skeleton structure with a skeletal density of 3.236 g/cm3, and 0.338 mmol/g of acidic oxygen-containing groups. Thus, it showed a high adsorption capacity of 0.16-0.24 mmol/g in removing seven antibiotics, of the popular fluoroquinolones (FQs) family from water. The contributions of hydrogen bonding, electrostatic attraction (EA) and π-π electron donor-acceptor interaction to the adsorption of FQs onto the PL and PLS sponges were analyzed systematically by investigating the pH dependence of the adsorption capacity, and the changes in adsorption of two sub structural analogs of FQs as molecular probes, and by performing theoretical calculations. The EA between the acidic oxygen-containing groups on the sponges and the amino groups of FQs played a dominant role in adsorption in near neutral conditions, leading to a superior adsorption performance for PLS. Overall, the composited sponges have the advantages of simple production, environmental-friendliness, convenient recycle, and low cost, which renders them potentially viable in treating real wastewater containing FQs.


Subject(s)
Water Pollutants, Chemical , Water , Adsorption , Anti-Bacterial Agents , Fluoroquinolones , Water Pollutants, Chemical/analysis
15.
Des Monomers Polym ; 24(1): 208-215, 2021.
Article in English | MEDLINE | ID: mdl-34345199

ABSTRACT

Rigid polyurethane foam (RPUF) as a filling material that can enhance the crashworthiness of thin-walled tubes. GO-HGMS hybrid was prepared by solution blending of graphene oxide (GO) and hollow glass microspheres (HGMS). The effect of the composite on the compression properties of RPUF was investigated. The GO-HGMS hybrid was characterized by fourier transform infrared spectroscopy (FTIR), x-ray diffraction(XRD), and scanning electron microscopy (SEM). The compression test and microstructure results show that the best compression performance and the largest apparent density of the composite foam were obtained when the hybrid content was 4 wt %. In addition, the compression test results of empty tubes (ET) and foam-filled tubes (FFT) under lateral load indicate that the combination of lightweight foamed material and thin-walled tube improves the stability of thin-walled tube deformation and the ability of the structure to resist deformation. GO-HGMS/RPUF as the filling material of thin-walled tube structure greatly improves the bearing capacity and energy absorption level of ET.

16.
Sci Total Environ ; 765: 144427, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33418328

ABSTRACT

A series of actinia-shaped lignin-based adsorbents (LNAEs) featuring lignin (LN) as the core and grafted poly(acrylic acid) (PAA) as the tentacle were designed and fabricated. Two fluoroquinolones (FQs) with similar molecular structures, ofloxacin (OFL) and ciprofloxacin (CIP), were used as targets to study the selective adsorption performance of LNAEs associated with the structural effects of the LN-based adsorbents in FQs binary aqueous system. The adsorption of the two FQs by LNAEs complied with the competitive Langmuir isothermal model, and showed selective removal of CIP over OFL due to the additional negative charge-assisted hydrogen bond (CAHB) formed between the carboxyl group of LNAEs and the secondary amino group of CIP, in addition to the effects of electrostatic attraction and normal hydrogen bonds, according to quantitative studies and density functional theory analysis. A binary nonlinear model based on phenomenological theory was applied to study the effects of PAA branched-chain length and distribution on the selective adsorption performance of the LN-based adsorbents. Accordingly, the branched-chain distribution played a more important role and higher distribution density of branched PAA could expose more adsorption sites on LNAEs' surface and improve the adsorptive selectivity. This study offers a well understanding of the structure-activity relationship of the surface grafting-modified adsorbents in binary pollutant systems and fundamental guidance for the exploitation and design of novel and efficient adsorbents.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Adsorption , Kinetics , Lignin , Ofloxacin/analysis , Structure-Activity Relationship , Water Pollutants, Chemical/analysis
17.
J Hazard Mater ; 403: 123603, 2021 02 05.
Article in English | MEDLINE | ID: mdl-32777749

ABSTRACT

A series of actinia-shaped lignin-based adsorbents (LNAEs) featuring lignin(LN) as the core and grafted poly(acrylic acid) (PAA) as the tentacle were designed and fabricated. LNAEs were applied to remove ofloxacin and ciprofloxacin from water, and their maximum adsorption capacities were 0.835 and 0.965 mmol/g at pH 6.0, respectively. However, their adsorption capacities were up to about 20 % and 31 % reductions in the present of NaCl and humic acid, respectively. Electrostatic attraction (EA) and hydrogen bonding (HB), including ordinary HB and negative charged auxiliary HB, were mainly involved in adsorption. Experimental and calculation results indicated HB contributes more than EA. The effects of two structural factors of LNAEs, namely, PAA branched-chain length(L) and distribution density(D), on the adsorption performance associated with HB and EA, were quantitatively discussed using a binary nonlinear model based on phenomenological theory. The fitting results were completely consistent with the experimental findings. D was more efficient than L in promoting HB and EA in adsorption due to the cooperative effects of adjacent branched-chains and enhanced activity of terminal groups. This study provides a better understanding of the structure-activity relationship of surface grafting-modified adsorbents and fundamental guidance for the exploitation and design of novel and efficient adsorbents.


Subject(s)
Lignin , Water Pollutants, Chemical , Adsorption , Anti-Bacterial Agents , Fluoroquinolones , Hydrogen-Ion Concentration , Kinetics , Water Pollutants, Chemical/analysis
18.
J Environ Manage ; 274: 111184, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32791324

ABSTRACT

Resource utilization of wastes through effective separation is a major challenge in the field of water and wastewater treatment. Photocatalytic degradation is a powerful water treatment technology but has no selectivity in degradation of various coexisting contaminants due to its strong oxidation. In this work, a complex film composed of CdS and carboxylmethyl starch (CdS/CMS) was designed and fabricated using in situ formation method. The morphology, composition, and optical property of this film were investigated in detail by various characterization methods. CdS was well distributed in the starch matrix, and the absorption wavelength of this film was still located in the visible light region. This starch-based complex film was used to remove various organic dyes [methylene blue (MB), crystal violet (CV), and rhodamine B (RhB)] from aqueous solutions by two consecutive processes of adsorption enrichment and photocatalysis degradation. 0.1 g of CdS/CMS film can remove approximately 86.72% of MB and 81.03% of CV in 120 min. CdS/CMS still exhibited evidently selective photocatalysis degradation of MB and CV in MB/RhB and CV/RhB binary systems, respectively, and had nearly no effect on RhB. The cationic groups on MB and CV can effectively interact with negatively carboxyl groups of CMS via electrostatic interactions, causing their good affinities; but the anionic groups on RhB had an electrostatic repulsion to the starch matrix. The considerably different affinities of various dyes to CMS triggered strong adsorption preferences and great selective degradation effectiveness. The selectivity of CdS/CMS could not be influenced by pH and some coexisting inorganic anions. Furthermore, this complex film did not require regeneration and could be reused directly with low removal capacity loss. Therefore, a new and simple strategy was provided to realize the effective separation and recovery of target contaminants in water by photocatalytic degradation technology.


Subject(s)
Water Pollutants, Chemical/analysis , Water Purification , Adsorption , Coloring Agents , Starch
19.
J Colloid Interface Sci ; 575: 61-68, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32361240

ABSTRACT

Transition metal phosphides have attracted increasing attention as anode materials for sodium-ion batteries (SIBs). Cobalt phosphide (CoP) has been deemed as prospective anode materials owing to its high theoretical capacity. Nevertheless, the defects of cobalt phosphides are evident. Low conductivity, the non-negligible volume expansion and aggregation of particles during sodiation/desodiation process result in poor cycling performance and rapid capacity decay, which greatly limit their applications. Herein, we designed a hollow-nanotube structure of sulfur-doped cobalt phosphide (S-CoP) nanoparticles coated by nitrogen-doped porous carbon (S-CoP@NPC), which can be successfully synthesized via an ordinary hydrothermal process followed by the low-temperature phosphorization/sulfuration treatment. The doping of sulfur element provides more active sites, meanwhile, the carbon coating largely helps to avoid the agglomeration of nanoparticles, alleviate volume expansion and improve the conductivity of materials. The S-CoP@NPC composite presents stable cycling performance, showing a discharge specific capacity of 230 mAh g-1 over 370 cycles at 0.2 A g-1. In addition, it also exhibits good rate capability with a discharge specific capacity of 143 mAh g-1 at 5 A g-1, even when the current density returns to 0.2 A g-1, the discharge specific capacity can recover 213 mAh g-1. Furthermore, the kinetic analysis of S-CoP@NPC composite explains that the excellent cycling and rate performance benefit from the extrinsic pseudocapacitive behavior.

20.
ACS Appl Mater Interfaces ; 12(11): 12717-12726, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32101686

ABSTRACT

Cu(In,Ga)Se2 (CIGS) is considered a promising photovoltaics material due to its excellent properties and high efficiency. However, the complicated deep defects (such as InCu or GaCu) in the CIGS layer hamper the development of polycrystalline CIGS solar cells. Numerous efforts have been employed to passivate these defects which distributed in the grain boundary and the CIGS/CdS interface. In this work, we implemented an effective Ag substituting approach to passivate bulk defects in CIGS absorber. The composition and phase characterizations revealed that Ag was successfully incorporated in the CIGS lattice. The substituting of Ag could boost the crystallization without obviously changing the band gap. The C-V and EIS results demonstrated that the device showed enlarged Wd and beneficial carrier transport dynamics after Ag incorporation. The DLTS result revealed that the deep InCu defect density was dramatically decreased after Ag substituting for Cu. A champion Ag-substituted CIGS device exhibited a remarkable efficiency of 15.82%, with improved VOC of 630 mV, JSC of 34.44 mA/cm2, and FF of 72.90%. Comparing with the efficiency of an unsubstituted CIGS device (12.18%), a Ag-substituted CIGS device exhibited 30% enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...