Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 29(3): 436-450.e15, 2022 03 17.
Article in English | MEDLINE | ID: mdl-34852219

ABSTRACT

SMIP004-7 is a small molecule inhibitor of mitochondrial respiration with selective in vivo anti-cancer activity through an as-yet unknown molecular target. We demonstrate here that SMIP004-7 targets drug-resistant cancer cells with stem-like features by inhibiting mitochondrial respiration complex I (NADH:ubiquinone oxidoreductase, complex I [CI]). Instead of affecting the quinone-binding site targeted by most CI inhibitors, SMIP004-7 and its cytochrome P450-dependent activated metabolite(s) have an uncompetitive mechanism of inhibition involving a distinct N-terminal region of catalytic subunit NDUFS2 that leads to rapid disassembly of CI. SMIP004-7 and an improved chemical analog selectively engage NDUFS2 in vivo to inhibit the growth of triple-negative breast cancer transplants, a response mediated at least in part by boosting CD4+ and CD8+ T cell-mediated immune surveillance. Thus, SMIP004-7 defines an emerging class of ubiquinone uncompetitive CI inhibitors for cell autonomous and microenvironmental metabolic targeting of mitochondrial respiration in cancer.


Subject(s)
Neoplasms , Ubiquinone , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Ubiquinone/metabolism , Ubiquinone/pharmacology
2.
Elife ; 82019 06 11.
Article in English | MEDLINE | ID: mdl-31184304

ABSTRACT

Regulated proinsulin biosynthesis, disulfide bond formation and ER redox homeostasis are essential to prevent Type two diabetes. In ß cells, protein disulfide isomerase A1 (PDIA1/P4HB), the most abundant ER oxidoreductase of over 17 members, can interact with proinsulin to influence disulfide maturation. Here we find Pdia1 is required for optimal insulin production under metabolic stress in vivo. ß cell-specific Pdia1 deletion in young high-fat diet fed mice or aged mice exacerbated glucose intolerance with inadequate insulinemia and increased the proinsulin/insulin ratio in both serum and islets compared to wildtype mice. Ultrastructural abnormalities in Pdia1-null ß cells include diminished insulin granule content, ER vesiculation and distention, mitochondrial swelling and nuclear condensation. Furthermore, Pdia1 deletion increased accumulation of disulfide-linked high molecular weight proinsulin complexes and islet vulnerability to oxidative stress. These findings demonstrate that PDIA1 contributes to oxidative maturation of proinsulin in the ER to support insulin production and ß cell health.


Subject(s)
Insulin-Secreting Cells/metabolism , Insulin/metabolism , Obesity/metabolism , Procollagen-Proline Dioxygenase/metabolism , Proinsulin/metabolism , Protein Disulfide-Isomerases/metabolism , Animals , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat/adverse effects , Disulfides/metabolism , Endoplasmic Reticulum/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Mice, Knockout , Mice, Transgenic , Mitochondrial Swelling , Obesity/etiology , Obesity/genetics , Oxidative Stress , Procollagen-Proline Dioxygenase/genetics , Protein Disulfide-Isomerases/genetics
3.
Hepatology ; 63(5): 1576-91, 2016 May.
Article in English | MEDLINE | ID: mdl-26799785

ABSTRACT

UNLABELLED: The hypoxia-inducible factor (HIF), HIF-1, is a central regulator of the response to low oxygen or inflammatory stress and plays an essential role in survival and function of immune cells. However, the mechanisms regulating nonhypoxic induction of HIF-1 remain unclear. Here, we assess the impact of germline heterozygosity of a novel, oxygen-independent ubiquitin ligase for HIF-1α: hypoxia-associated factor (HAF; encoded by SART1). SART1(-/-) mice were embryonic lethal, whereas male SART1(+/-) mice spontaneously recapitulated key features of nonalcoholic steatohepatitis (NASH)-driven hepatocellular carcinoma (HCC), including steatosis, fibrosis, and inflammatory cytokine production. Male, but not female, SART1(+/-) mice showed significant up-regulation of HIF-1α in circulating and liver-infiltrating immune cells, but not in hepatocytes, before development of malignancy. Additionally, Kupffer cells derived from male, but not female, SART1(+/-) mice produced increased levels of the HIF-1-dependent chemokine, regulated on activation, normal T-cell expressed and secreted (RANTES), compared to wild type. This was associated with increased liver-neutrophilic infiltration, whereas infiltration of lymphocytes and macrophages were not significantly different. Neutralization of circulating RANTES decreased liver neutrophilic infiltration and attenuated HCC tumor initiation/growth in SART1(+/-) mice. CONCLUSION: This work establishes a new tumor-suppressor role for HAF in immune cell function by preventing inappropriate HIF-1 activation in male mice and identifies RANTES as a novel therapeutic target for NASH and NASH-driven HCC.


Subject(s)
Carcinoma, Hepatocellular/etiology , Chemokine CCL5/physiology , Haploinsufficiency , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Liver Neoplasms/etiology , Trans-Activators/genetics , Animals , Fatty Acids/metabolism , Fatty Liver/etiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration , Ribonucleoproteins, Small Nuclear
4.
FASEB J ; 28(4): 1854-69, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24421398

ABSTRACT

Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (~15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1-2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ~50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.


Subject(s)
Blindness/etiology , Dietary Supplements/toxicity , Mannose-6-Phosphate Isomerase/metabolism , Mannose/toxicity , Animals , Blindness/genetics , Blindness/metabolism , Blotting, Western , Cells, Cultured , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Eye/embryology , Eye/growth & development , Eye/metabolism , Female , Humans , Immunohistochemistry , Male , Mannose/blood , Mannose/metabolism , Mannose-6-Phosphate Isomerase/genetics , Mannosephosphates/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Placenta/drug effects , Placenta/embryology , Placenta/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...