Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37445448

ABSTRACT

BACKGROUND: Many clinical trials have reported the use of mesenchymal stromal cells (MSCs) following the indication of severe SARS-CoV-2 infection. However, in the COVID19 pandemic context, academic laboratories had to adapt a production process to obtain MSCs in a very short time. Production processes, especially freezing/thawing cycles, or culture medium have impacts on MSC properties. We evaluated the impact of an intermediate cryopreservation state during MSC culture to increase production yields. METHODS: Seven Wharton's jelly (WJ)-MSC batches generated from seven different umbilical cords with only one cryopreservation step and 13 WJ-MSC batches produced with intermediate freezing were formed according to good manufacturing practices. The identity (phenotype and clonogenic capacities), safety (karyotype, telomerase activity, sterility, and donor qualification), and functionality (viability, mixed lymphocyte reaction) were analyzed. RESULTS: No significant differences between MSC production processes were observed, except for the clonogenic capacity, which was decreased, although it always remained above our specifications. CONCLUSIONS: Intermediate cryopreservation allows an increase in the production yield and has little impact on the basic characteristics of MSCs.

2.
J Tissue Eng Regen Med ; 12(2): 360-369, 2018 02.
Article in English | MEDLINE | ID: mdl-28486755

ABSTRACT

Scaffolds laden with stem cells are a promising approach for articular cartilage repair. Investigations have shown that implantation of artificial matrices, growth factors or chondrocytes can stimulate cartilage formation, but no existing strategies apply mechanical stimulation on stratified scaffolds to mimic the cartilage environment. The purpose of this study was to adapt a spraying method for stratified cartilage engineering and to stimulate the biosubstitute. Human mesenchymal stem cells from bone marrow were seeded in an alginate (Alg)/hyaluronic acid (HA) or Alg/hydroxyapatite (Hap) gel to direct cartilage and hypertrophic cartilage/subchondral bone differentiation, respectively, in different layers within a single scaffold. Homogeneous or composite stratified scaffolds were cultured for 28 days and cell viability and differentiation were assessed. The heterogeneous scaffold was stimulated daily. The mechanical behaviour of the stratified scaffolds were investigated by plane-strain compression tests. Results showed that the spraying process did not affect cell viability. Moreover, cell differentiation driven by the microenvironment was increased with loading: in the layer with Alg/HA, a specific extracellular matrix of cartilage, composed of glycosaminoglycans and type II collagen was observed, and in the Alg/Hap layer more collagen X was detected. Hap seemed to drive cells to a hypertrophic chondrocytic phenotype and increased mechanical resistance of the scaffold. In conclusion, mechanical stimulations will allow for the production of a stratified biosubstitute, laden with human mesenchymal stem cells from bone marrow, which is capable in vivo to mimic all depths of chondral defects, thanks to an efficient combination of stem cells, biomaterial compositions and mechanical loading.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/cytology , Stress, Mechanical , Tissue Scaffolds/chemistry , Aged , Alginates/pharmacology , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Chondrogenesis/drug effects , Durapatite/pharmacology , Humans , Hydrogel, Polyethylene Glycol Dimethacrylate/pharmacology , Mesenchymal Stem Cells/drug effects , Middle Aged
3.
Stem Cell Res Ther ; 6: 260, 2015 Dec 30.
Article in English | MEDLINE | ID: mdl-26718750

ABSTRACT

BACKGROUND: Due to their intrinsic properties, stem cells are promising tools for new developments in tissue engineering and particularly for cartilage tissue regeneration. Although mesenchymal stromal/stem cells from bone marrow (BM-MSC) have long been the most used stem cell source in cartilage tissue engineering, they have certain limits. Thanks to their properties such as low immunogenicity and particularly chondrogenic differentiation potential, mesenchymal stromal/stem cells from Wharton's jelly (WJ-MSC) promise to be an interesting source of MSC for cartilage tissue engineering. METHODS: In this study, we propose to evaluate chondrogenic potential of WJ-MSC embedded in alginate/hyaluronic acid hydrogel over 28 days. Hydrogels were constructed by the original spraying method. Our main objective was to evaluate chondrogenic differentiation of WJ-MSC on three-dimensional scaffolds, without adding growth factors, at transcript and protein levels. We compared the results to those obtained from standard BM-MSC. RESULTS: After 3 days of culture, WJ-MSC seemed to be adapted to their new three-dimensional environment without any detectable damage. From day 14 and up to 28 days, the proportion of WJ-MSC CD73(+), CD90(+), CD105(+) and CD166(+) decreased significantly compared to monolayer marker expression. Moreover, WJ-MSC and BM-MSC showed different phenotype profiles. After 28 days of scaffold culture, our results showed strong upregulation of cartilage-specific transcript expression. WJ-MSC exhibited greater type II collagen synthesis than BM-MSC at both transcript and protein levels. Furthermore, our work highlighted a relevant result showing that WJ-MSC expressed Runx2 and type X collagen at lower levels than BM-MSC. CONCLUSIONS: Once seeded in the hydrogel scaffold, WJ-MSC and BM-MSC have different profiles of chondrogenic differentiation at both the phenotypic level and matrix synthesis. After 4 weeks, WJ-MSC, embedded in a three-dimensional environment, were able to adapt to their environment and express specific cartilage-related genes and matrix proteins. Today, WJ-MSC represent a real alternative source of stem cells for cartilage tissue engineering.


Subject(s)
Hydrogels/chemistry , Mesenchymal Stem Cells/cytology , Tissue Engineering , Adult , Alginates/chemistry , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cartilage/physiology , Cell Differentiation , Cell Survival , Cells, Cultured , Chondrogenesis , Collagen Type II/metabolism , Collagen Type X/metabolism , Core Binding Factor Alpha 1 Subunit/metabolism , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Humans , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Middle Aged , Phenotype , Regeneration , Wharton Jelly/cytology , Wharton Jelly/metabolism
4.
Biomed Mater Eng ; 25(1 Suppl): 41-6, 2015.
Article in English | MEDLINE | ID: mdl-25538054

ABSTRACT

Under physiological conditions, there is a production of limited range of free radicals. However, when the cellular antioxidant defence systems, overwhelm and fail to reverse back the free radicals to their normal basal levels, there is a creation of a condition of redox disequilibrium termed "oxidative stress", which is implicated in a very wide spectrum of genetic, metabolic, and cellular responses. The excess of free radicals can, cause unfavourable molecular alterations to biomolecules through oxidation of lipids, proteins, RNA and DNA, that can in turn lead to mutagenesis, carcinogenesis, and aging. Mesenchymal stem cells (MSCs) have been proven to be a promising source of cells for regenerative medicine, and to be useful in the treatment of pathologies in which tissue damage is linked to oxidative stress. Moreover, MSCs appeared to efficiently manage oxidative stress and to be more resistant to oxidative insult than normal somatic cells, making them an interesting and testable model for the role of oxidative stress in the aging process. In addition, aging is accompanied by a progressive decline in stem cell function, resulting in less effective tissue homeostasis and repair. Also, there is an obvious link between intracellular reactive oxygen species levels and cellular senescence. To date, few studies have investigated the promotion of aging by oxidative stress on human MSCs, and the mechanism by which oxidative stress induce stem cell aging is poorly understood. In this context, the aim of this review is to gain insight the current knowledge about the molecular mechanisms of aging-induced oxidative stress in human MSCs.


Subject(s)
Aging/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Cell Proliferation/physiology , Cell Survival/physiology , Cells, Cultured , Humans
5.
Biomed Mater Eng ; 24(1 Suppl): 47-52, 2014.
Article in English | MEDLINE | ID: mdl-24928917

ABSTRACT

While mesenchymal stem cells represent an interesting cell source for regenerative medicine, several points have to be investigated to improve their use in clinical, and in particular in the elderly population. This work studied the proliferation capacity of mesenchymal stem cells isolated from human bone marrow in function of donor's age. Doubling time after in vitro culture, clonogenicity and phenotype were analyzed in 17 samples ranging from 3 to 85 years old (mean 47 ± 27). Results showed an increase in the doubling time for cell coming from old donor compared to cells coming from young ones. This was accompanied by a decrease in clonogenicity while no changes were observe in cell phenotype. In conclusion, this study showed an effect of donor's age on the proliferation capacity of mesenchymal stem cells isolated from bone marrow that was correlated to a decrease in clonogenicity. The comprehension of molecular mechanism involved in this process could help to improve the clinical application of mesenchymal stem cells.


Subject(s)
Age Factors , Cell Proliferation/physiology , Colony-Forming Units Assay/methods , Mesenchymal Stem Cells , Adolescent , Adult , Aged , Aged, 80 and over , Bone Marrow Cells/cytology , Cells, Cultured , Child , Child, Preschool , Humans , Middle Aged , Regenerative Medicine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...