Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 11(12)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36552238

ABSTRACT

Wildlife traffickers often claim that confiscated animals were captive-bred rather than wild-caught to launder wild animals and escape prosecution. We used stable isotopes (δ13C and δ15N) derived from the claw tips of wild wood turtles from Maine and captive wood turtles throughout the eastern U.S. to develop a predictive model used to classify confiscated wood turtles as wild or captive. We found that the claw tips of wild and captive wood turtles (Glyptemys insculpta) were isotopically distinct. Captive turtles had significantly higher δ13C and δ15N values than wild turtles. Our model correctly classified all wild turtles as wild (100%) and nearly all captive turtles as captive (94%). All but two of the 71 turtles tested were successfully predicted as wild or captive (97.2% accuracy), yielding a misclassification rate of 2.8%. In addition to our model being useful to law enforcement in Maine, we aim to develop a multi-species model to assist conservation law enforcement efforts to curb illegal turtle trafficking from locations across the eastern United States and Canada.

2.
PLoS One ; 17(7): e0271363, 2022.
Article in English | MEDLINE | ID: mdl-35802603

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0044821.].

3.
Conserv Sci Pract ; 3(11): e535, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34901774

ABSTRACT

The COVID-19 pandemic and its related human activity shutdowns provide unique opportunities for biodiversity monitoring through what has been termed the "anthropause" or the "great human confinement experiment." The pandemic caused immense disruption to human activity in the northeastern United States in the spring of 2020, with notable reductions in traffic levels. These shutdowns coincided with the seasonal migration of adult amphibians, which are typically subject to intense vehicle-impact mortality. Using data collected as part of an annual community science monitoring program in Maine from 2018 to 2021, we examined how amphibian mortality probabilities responded to reductions in traffic during the pandemic. While we detected a 50% decline for all amphibians, this was driven entirely by reductions in frog mortality. Wildlife collision data from the Maine Department of Transportation on other wildlife species support our finding of drastic declines in wildlife road mortality in spring 2020 when compared with immediately previous and subsequent years. Additionally, we find that frogs suffer significantly higher road mortality than salamanders, particularly when conditions are warmer and wetter.

4.
BMC Ecol ; 18(1): 34, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30217158

ABSTRACT

BACKGROUND: The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been implicated as a primary cause of decline in many species around the globe. However, there are some species and populations that are known to become infected in the wild, yet declines have not been observed. Here we conducted a yearlong capture-mark-recapture study and a 2-year long disease monitoring study of northern cricket frogs, Acris crepitans, in the lowland subtropical forests of Louisiana. RESULTS: We found little evidence for an impact of Bd infection on survival; however, Bd infection did appear to cause sublethal effects, including increased capture probability in the field. CONCLUSIONS: Our study suggests that even in apparently stable populations, where Bd does not appear to cause mortality, there may be sublethal effects of infection that can impact a host population's dynamics and structure. Understanding and documenting such sublethal effects of infection on wild, seemingly stable populations is important, particularly for predicting future population declines.


Subject(s)
Anura , Chytridiomycota/physiology , Mycoses/veterinary , Animals , Louisiana , Mycoses/microbiology , Population Dynamics
5.
Ecohealth ; 10(1): 90-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23604643

ABSTRACT

The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been linked to amphibian declines and extinctions worldwide. The pathogen has been found on amphibians throughout eastern North America, but has not been associated with mass die-offs in this region. In this study, we conducted laboratory experiments on the effects of Bd infection in a putative carrier species, Lithobates pipiens, using two estimators of fitness: jumping performance and testes morphology. Over the 8-week study period, peak acceleration during jumping was not significantly different between infected and uninfected animals. Peak velocity, however, was significantly lower for infected animals after 8 weeks. Two measures of sperm production, germinal epithelium depth, and maximum spermatic cyst diameter, showed no difference between infected and uninfected animals. The width, but not length, of testes of infected animals was significantly greater than in uninfected animals. This study is the first to show effects on whole-organism performance of Bd infection in post-metamorphic amphibians, and may have important long-term, evolutionary implications for amphibian populations co-existing with Bd infection.


Subject(s)
Chytridiomycota/pathogenicity , Communicable Diseases, Emerging/microbiology , Motor Activity/physiology , Mycoses/epidemiology , Rana pipiens/microbiology , Sexual Behavior, Animal/physiology , Animals , Chytridiomycota/isolation & purification , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Male , Mycoses/veterinary , North America , Physical Fitness , Rana pipiens/physiology
6.
Proc Natl Acad Sci U S A ; 110(1): 210-5, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23248288

ABSTRACT

Batrachochytrium dendrobatidis, a pathogenic chytrid fungus implicated in worldwide amphibian declines, is considered an amphibian specialist. Identification of nonamphibian hosts could help explain the virulence, heterogeneous distribution, variable rates of spread, and persistence of B. dendrobatidis in freshwater ecosystems even after amphibian extirpations. Here, we test whether mosquitofish (Gambusia holbrooki) and crayfish (Procambarus spp. and Orconectes virilis), which are syntopic with many amphibian species, are possible hosts for B. dendrobatidis. Field surveys in Louisiana and Colorado revealed that zoosporangia occur within crayfish gastrointestinal tracts, that B. dendrobatidis prevalence in crayfish was up to 29%, and that crayfish presence in Colorado wetlands was a positive predictor of B. dendrobatidis infections in cooccurring amphibians. In experiments, crayfish, but not mosquitofish, became infected with B. dendrobatidis, maintained the infection for at least 12 wk, and transmitted B. dendrobatidis to amphibians. Exposure to water that previously held B. dendrobatidis also caused significant crayfish mortality and gill recession. These results indicate that there are nonamphibian hosts for B. dendrobatidis and suggest that B. dendrobatidis releases a chemical that can cause host pathology, even in the absence of infection. Managing these biological reservoirs for B. dendrobatidis and identifying this chemical might provide new hope for imperiled amphibians.


Subject(s)
Astacoidea/microbiology , Chytridiomycota/chemistry , Cyprinodontiformes , Fish Diseases/epidemiology , Fish Diseases/microbiology , Mycoses/veterinary , Animals , Chytridiomycota/physiology , Colorado/epidemiology , Fish Diseases/transmission , Gastrointestinal Contents/microbiology , Gills/microbiology , Louisiana/epidemiology , Mycoses/epidemiology , Mycoses/transmission , Prevalence , Proportional Hazards Models , Sporangia
7.
PLoS One ; 7(9): e44821, 2012.
Article in English | MEDLINE | ID: mdl-22984569

ABSTRACT

Little is known about the impact that the pathogenic amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has on fully aquatic salamander species of the eastern United States. As a first step in determining the impacts of Bd on these species, we aimed to determine the prevalence of Bd in wild populations of fully aquatic salamanders in the genera Amphiuma, Necturus, Pseudobranchus, and Siren. We sampled a total of 98 salamanders, representing nine species from sites in Florida, Mississippi, and Louisiana. Overall, infection prevalence was found to be 0.34, with significant differences among genera but no clear geographic pattern. We also found evidence for seasonal variation, but additional sampling throughout the year is needed to clarify this pattern. The high rate of infection discovered in this study is consistent with studies of other amphibians from the southeastern United States. Coupled with previously published data on life histories and population densities, the results presented here suggest that fully aquatic salamanders may be serving as important vectors of Bd and the interaction between these species and Bd warrants additional research.


Subject(s)
Chytridiomycota/metabolism , Mycoses/microbiology , Urodela/microbiology , Amphibians , Animals , Biomass , Ecosystem , Geography , Prevalence , Southeastern United States , Species Specificity
8.
PLoS One ; 7(6): e38473, 2012.
Article in English | MEDLINE | ID: mdl-22685572

ABSTRACT

Amphibians worldwide are experiencing devastating declines, some of which are due to the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd). Populations in the southeastern United States, however, have not been noticeably affected by the pathogen. The green treefrog (Hyla cinerea) is abundant and widespread in the southeastern United States, but has not been documented to harbor Bd infection. This study examined the susceptibility of H. cinerea to two strains of Bd in the lab and the prevalence of infection in wild populations of this species in southeastern Louisiana. Although we were able to infect H. cinerea with Bd in the lab, we did not observe any clinical signs of chytridiomycosis. Furthermore, infection by Bd does not appear to negatively affect body condition or growth rate of post-metamorphic individuals. We found no evidence of infection in surveys of wild H. cinerea. Our results suggest that H. cinerea is not susceptible to chytridiomycosis post-metamorphosis and probably is not an important carrier of the fungal pathogen Bd in the southeastern United States, although susceptibility at the larval stage remains unknown.


Subject(s)
Anura/microbiology , Chytridiomycota/physiology , Host-Pathogen Interactions , Animals , Chytridiomycota/classification , Geography , Host Specificity , Laboratories , Louisiana , Research Design , Seasons , Species Specificity , Spores, Fungal/physiology
9.
Dis Aquat Organ ; 94(3): 235-8, 2011 May 09.
Article in English | MEDLINE | ID: mdl-21790070

ABSTRACT

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has been implicated in amphibian declines worldwide. In vitro laboratory studies and those done on wild populations indicate that Bd grows best at cool temperatures between 17 and 25 degrees C. In the present study, we tested whether moderately elevating the ambient temperature to 30 degrees C could be an effective treatment for frogs infected with Bd. We acquired 35 bullfrogs Rana catesbeiana from breeding facilities and 36 northern cricket frogs Acris crepitans from the wild and acclimated them to either 23 or 26 degrees C for 1 mo. Following the acclimation period, frogs were tested for the presence of Bd using qPCR TaqMan assays. The 12 R. catesbeiana and 16 A. crepitans that tested positive for Bd were subjected to 30 degrees C for 10 consecutive days before returning frogs to their starting temperatures. Post-treatment testing revealed that 27 of the 28 frogs that had tested positive were no longer infected with Bd; only a single A. crepitans remained infected following treatment. This result indicates that elevating ambient temperature to a moderate 30 degrees C can be effective as a treatment for Bd infection in captive amphibians, and suggests that heat may be a superior alternative to antifungal drugs.


Subject(s)
Anura/microbiology , Chytridiomycota/physiology , Hot Temperature , Mycoses/veterinary , Animals , Host-Pathogen Interactions , Mycoses/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL