Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Med Chem ; 67(13): 10601-10621, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38896548

ABSTRACT

Inflammatory bowel disease (IBD) is characterized by abnormal immune responses, including elevated proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) and interleukin-6 (IL-6) in the gastrointestinal (GI) tract. This study presents the synthesis and anti-inflammatory evaluation of 2,4,5-trimethylpyridin-3-ol analogues, which exhibit dual inhibition of TNFα- and IL-6-induced inflammation. Analysis using in silico methods, including 3D shape-based target identification, modeling, and docking, identified G protein-coupled estrogen receptor 1 (GPER) as the molecular target for the most effective analogue, 6-26, which exhibits remarkable efficacy in ameliorating inflammation and restoring colonic mucosal integrity. This was further validated by surface plasmon resonance (SPR) assay results, which showed direct binding to GPER, and by the results showing that GPER knockdown abolished the inhibitory effects of 6-26 on TNFα and IL-6 actions. Notably, 6-26 displayed no cytotoxicity, unlike G1 and G15, a well-known GPER agonist and an antagonist, respectively, which induced necroptosis independently of GPER. These findings suggest that the GPER-selective compound 6-26 holds promise as a therapeutic candidate for IBD.


Subject(s)
Inflammatory Bowel Diseases , Receptors, Estrogen , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/agonists , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Humans , Animals , Receptors, Estrogen/metabolism , Receptors, Estrogen/antagonists & inhibitors , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mice , Molecular Docking Simulation , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Pyridines/pharmacology , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/therapeutic use , Mice, Inbred C57BL , Structure-Activity Relationship
2.
J Med Chem ; 67(11): 9173-9193, 2024 06 13.
Article in English | MEDLINE | ID: mdl-38810170

ABSTRACT

While in the process of designing more effective synthetic opioid rescue agents, we serendipitously identified a new chemotype of potent synthetic opioid. Here, we report that conformational constraint of a piperazine ring converts a mu opioid receptor (MOR) antagonist into a potent MOR agonist. The prototype of the series, which we have termed atoxifent (2), possesses potent in vitro agonist activity. In mice, atoxifent displayed long-lasting antinociception that was reversible with naltrexone. Repeated dosing of atoxifent produced antinociceptive tolerance and a level of withdrawal like that of fentanyl. In rats, while atoxifent produced complete loss of locomotor activity like fentanyl, it failed to produce deep respiratory depression associated with fentanyl-induced lethality. Assessment of brain biodistribution demonstrated ample distribution of atoxifent into the brain with a Tmax of approximately 0.25 h. These results indicate enhanced safety for atoxifent-like molecules compared to fentanyl.


Subject(s)
Analgesics, Opioid , Fentanyl , Receptors, Opioid, mu , Respiratory Insufficiency , Animals , Mice , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/drug therapy , Analgesics, Opioid/pharmacology , Analgesics, Opioid/chemical synthesis , Analgesics, Opioid/chemistry , Rats , Male , Fentanyl/pharmacology , Fentanyl/chemical synthesis , Fentanyl/chemistry , Structure-Activity Relationship , Piperazines/pharmacology , Piperazines/chemistry , Piperazines/chemical synthesis , Piperazines/therapeutic use , Piperazines/pharmacokinetics , Humans , Rats, Sprague-Dawley , Tissue Distribution , Brain/metabolism , Brain/drug effects , Naltrexone/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/chemical synthesis , Naltrexone/chemistry , Naltrexone/therapeutic use
3.
J Med Chem ; 67(9): 7146-7157, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38636481

ABSTRACT

Previously, we demonstrated that linear peptide epoxyketones targeting the immunoproteasome (iP) could ameliorate cognitive deficits in mouse models of Alzheimer's disease (AD) independently of amyloid deposition. We also reported the first iP-targeting macrocyclic peptide epoxyketones, which exhibit improved metabolic stability compared with their linear counterparts. Here, we prepared additional macrocyclic peptide epoxyketones and compared them with existing macrocyclic iP inhibitors by assessing Caco2 cell-based permeability and microsomal stability, providing the four best macrocyclic iP inhibitors. We then evaluated the four compounds using the Ames test and the potency assays in BV2 cells, selecting compound 5 as our AD drug lead. When 5 was administered intravenously (40 mg/kg) or orally (150 mg/kg) into healthy BALB/c mice, we observed considerable iP inhibition in the mouse brain, indicating good blood-brain barrier permeability and target engagement. Combined results suggest that 5 is a promising AD drug lead that may need further investigation.


Subject(s)
Alzheimer Disease , Blood-Brain Barrier , Brain , Mice, Inbred BALB C , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Humans , Blood-Brain Barrier/metabolism , Mice , Caco-2 Cells , Brain/metabolism , Proteasome Endopeptidase Complex/metabolism , Permeability , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/pharmacokinetics , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/pharmacokinetics , Ketones/chemistry , Ketones/pharmacology , Structure-Activity Relationship
4.
J Org Chem ; 87(16): 10836-10847, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35946352

ABSTRACT

The secondary metabolites from Hericium erinaceus are well-known to have neurotrophic and neuroprotective effects. Isohericerinol A (1), isolated by our colleagues from its fruiting parts has a strong ability to increase the nerve growth factor secretion in C6 glioma cells. The current work describes the total synthesis of 1 and its regioisomer 5 in a few steps. We present two different approaches to 1 and a regiodivergent approach for both 1 and 5 by utilizing easily accessible feedstocks. Interestingly, the natural product 1, regioisomer 5, and their intermediates exhibited potent neurotrophic activity in in vitro experimental systems. Thus, these synthetic strategies provide access to a systematic structure-activity relationship study of natural product 1.


Subject(s)
Biological Products , Glioma , Neuroprotective Agents , Biological Products/pharmacology , Humans , Neuroprotective Agents/pharmacology
5.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35455396

ABSTRACT

With the several targets of cancer treatment, inhibition of DNA topoisomerase activity is one of the well-known focuses in cancer chemotherapy. Here, we describe the design and synthesis of a novel series of pyrazolo[4,3-f]quinolines with potential anticancer/topoisomerase inhibition activity. Forty newly designed pyrazolo[4,3-f]quinoline derivatives were synthesized via inverse imino Diels-Alder reaction. The antiproliferative activity of the synthesized derivatives was initially measured in the human NUGC-3 cancer cell line. Then, the selected compounds 1B, 1C, 1M, 2A, 2D, 2E, 2F, and 2R with higher activity among tested compounds were screened against six cancer cell lines, including ACHN, HCT-15, MM231, NCI-H23, NUGC-3, and PC-3. The results demonstrated that the compounds 1M, 2E, and 2P were most effective in all cancer cell lines exhibiting GI50 below 8 µM. Among them, 2E showed an equivalent inhibition pattern of topoisomerase IIα activity to that of etoposide, positive control at a 100 µM dose.

6.
J Enzyme Inhib Med Chem ; 37(1): 844-856, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35296193

ABSTRACT

A novel series of aminotrimethylpyridinol and aminodimethylpyrimidinol derivatives were designed and synthesised for FGFR4 inhibitors. Structure-activity relationship on the FGFR4 inhibitory activity of the new compounds was clearly elucidated by an intensive molecular docking study. Anti-cancer activity of the compounds was evaluated using hepatocellular carcinoma (HCC) cell lines and a chick chorioallantoic membrane (CAM) tumour model. Compound 6O showed FGFR4 inhibitory activity over FGFR1 - 3. Compared to the positive control BLU9931, compound 6O exhibited at least 8 times higher FGFR4 selectivity. Strong anti-proliferative activity of compound 6O was observed against Hep3B, an HCC cell line which was a much more sensitive cell line to BLU9931. In vivo anti-tumour activity of compound 6O against Hep3B-xenografted CAM tumour model was almost similar to BLU9931. Overall, compound 6O, a novel derivative of aminodimethylpyrimidinol, was a selective FGFR4 kinase inhibitor blocking HCC tumour growth.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drug Design , Liver Neoplasms/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Chickens , Dose-Response Relationship, Drug , Humans , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Models, Molecular , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
7.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34832958

ABSTRACT

In continuation of studies for α-MSH stimulated melanogenesis inhibitors, we have evaluated the design, synthesis, and activity of a new series of chlorogenic acid (CGA) analogues comprising pyridine, pyrimidine, and diacyl derivatives. Among nineteen synthesized compounds, most of them (fifteen) exhibited better inhibitions of melanin formation in B16 melanoma cells. The results illustrated that a pyridine analogue 6f and a diacyl derivative 13a of CGA showed superior inhibition profiles (IC50: 2.5 ± 0.7 µM and 1.1 ± 0.1 µM, respectively) of α-MSH activities than positive controls, kojic acid and arbutin (IC50: 54 ± 1.5 µM and 380 ± 9.5 µM, respectively). The SAR studies showed that both -CF3 and -Cl groups exhibited better inhibition at the meta position on benzylamine than their ortho and para positions. In addition, the stability of diacyl analogues of CGA in methanol monitored by HPLC for 28 days indicated the steric bulkiness of acyl substituents as a key factor in their stability.

8.
Bioorg Chem ; 103: 104130, 2020 10.
Article in English | MEDLINE | ID: mdl-32745758

ABSTRACT

6-Aminopyridin-3-ol scaffold has shown an excellent anti-inflammatory bowel disease activity. Various analogues with the scaffold were synthesized in pursuit of the diversity of side chains tethering on the C(6)-position. Structure-activity relationship among the analogues was investigated to understand the effects of the side chains and their linkers on their anti-inflammatory activities. In this study, structural modification moved beyond side chains on the C(6)-position and reached to pyridine ring itself. It expedited us to synthesize diverse ring-modified analogues of a representative pyridine-3-ol, 6-acetamido-2,4,5-trimethylpyridin-3-ol (9). In the evaluation of compounds on their inhibitory actions against TNF-α-induced adhesion of monocytic cells to colonic epithelial cells, an in vitro model mimicking colon inflammation, the effects of compounds 9, 17, and 19 were greater than tofacitinib, an orally available anti-colitis drug, and compound 17 showed the greatest activity. In addition, TNF-α-induced angiogenesis, which permits more inflammatory cell migration into inflamed tissues, was significantly blocked by compounds 17 and 19 in a concentration-dependent manner. In the comparison of in vivo therapeutic effects of compounds 9, 17, and 19 on dextran sulfate sodium (DSS)-induced colitis in mice, compound 17 was the most potent and efficacious, and compound 19 was better than compound 9 which showed a similar degree of inhibitory effect to tofacitinib. Taken together, it seems that either the trimethyl system or the hydroxyl group on the pyridinol ring is essential to the activity. This finding might become a new milestone in the development of pyridinol-based anti-inflammatory bowel disease agents.


Subject(s)
Acetamides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colitis/drug therapy , Pyridines/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Colitis/chemically induced , Dextran Sulfate , Disease Models, Animal , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Female , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/pharmacology
9.
J Enzyme Inhib Med Chem ; 35(1): 1-20, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31619080

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic immuno-inflammation in gastrointestinal tract. We have evaluated the activity of the compounds to inhibit the adhesion of monocytes to colon epithelial cells is triggered by a pro-inflammatory cytokine, tumour necrosis factor (TNF)-α. The in vitro activity of the compounds, 13b (an ureido-derivative), 14c, 14j, 14k, 14n (thioureido-), 18c and 18d (sulfonamido-), was in correlation with in vivo anti-colitis activity revealed as significant recovery in body- and colon-weights and colon myeloperoxidase level, a biochemical marker of inflammation reflecting neutrophil infiltration. In vivo, TNBS-induced changes in the expression of inflammatory cytokines (TNF-α, IL-6, IL-1ß, IL-10, and TGF-ß), NLRP3 inflammasome components (NLRP-3, Caspase-1, and IL-18), and epithelial junction molecules (E-cadherin, claudin2/3, and ZO-1) were blocked and recovered by oral administration of the compounds (1 mg/kg). Compound 14n which showed the best efficacy can be a promising lead for orally available therapeutics for pathology of IBD.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Inflammatory Bowel Diseases/drug therapy , Pyridines/pharmacology , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/chemistry , Cells, Cultured , Colitis/chemically induced , Colitis/drug therapy , Cytokines/antagonists & inhibitors , Cytokines/metabolism , Dose-Response Relationship, Drug , Female , HT29 Cells , Humans , Inflammatory Bowel Diseases/pathology , Molecular Structure , Pyridines/chemical synthesis , Pyridines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Trinitrobenzenesulfonic Acid , U937 Cells
10.
Medchemcomm ; 9(8): 1305-1310, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30151084

ABSTRACT

Inflammatory bowel disease (IBD) is an inflammatory disease of the gastrointestinal tract with complex pathogenesis. Here, we synthesized 6-heteroarylamino analogues to inhibit TNF-α-induced adhesion of monocytes to colon epithelial cells which are implicated in the initial inflammation process of IBD. The best analogue, 16a, showed IC50 = 0.29 µM, which is about five orders of magnitude better than that of 5-aminosalicylic acid (5-ASA), a positive control. Oral administration of 6f and 16a dramatically ameliorated 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colon inflammation in rat. The ameliorating effects were accompanied by a high level of recovery in colon and body weights and in the myeloperoxidase (MPO) level. Consistently, the compounds suppressed the expression of intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1). Moreover, they significantly suppressed the expression of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 while increasing the level of IL-10, an anti-inflammatory cytokine.

11.
Org Biomol Chem ; 14(21): 4829-41, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27145715

ABSTRACT

Angiogenesis plays important roles in tumor growth and metastasis. Sunitinib (Sutent®) is an antitumor agent targeting receptor tyrosine kinases which are involved in angiogenesis as well as cancer cell growth and survival. Using the pyridin-3-ol scaffold, which was previously reported as an excellent antioxidant and antiangiogenic platform, we have synthesized sunitinib mimics 6 by hybridizing bicyclic pyridinol 4 as a key scaffold and pyrrole-2-carbaldehydes 7 as side chains. Cytotoxicity assays showed that compounds 6 have comparable to better anticancer activity than sunitinib against five different cancer cell lines. In addition, compounds 6 showed even lower levels of cytotoxicity against normal cells, resulting in up to 26-fold better safety windows, than sunitinib. Signaling pathway-associated transcription factor reporter assay and western blot analyses revealed that apoptosis induction in MDA-MB-231 human breast cancer cells by 6F is mainly mediated through the p53 increase and down-regulation of phospho-signal transducer and activator of transcription 3 (STAT3) and its target gene products, cyclin D, Bcl-2, and survivin. The data strongly suggest that our hybrid compounds can provide a novel anticancer scaffold with improved and safer cytotoxicity profiles than sunitinib.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Indoles/chemical synthesis , Indoles/pharmacology , Pyridines/chemistry , Pyrroles/chemistry , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Down-Regulation/drug effects , Drug Design , Humans , Indoles/chemistry , Protein Transport/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Sunitinib , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL