Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 10(24): 10993-11012, 2020.
Article in English | MEDLINE | ID: mdl-33042266

ABSTRACT

CRISPR/Cas-based mRNA imaging has been developed to labeling of high-abundance mRNAs. A lack of non-genetically encoded mRNA-tagged imaging tools has limited our ability to explore the functional distributions of endogenous low-abundance mRNAs in cells. Here, we developed a CRISPR-Sunspot method based on the SunTag signal amplification system that allows efficient imaging of low-abundance mRNAs with CRISPR/Cas9. Methods: We created a stable TRE3G-dCas9-EGFP cell line and generated an Inducible dCas9-EGFP imaging system for assessment of two factors, sgRNA and dCas9, which influence imaging quality. Based on SunTag system, we established a CRISPR-Sunspot imaging system for amplifying signals from single-molecule mRNA in live cells. CRISPR-Sunspot was used to track co-localization of Camk2a mRNA with regulatory protein Xlr3b in neurons. CRISPR-Sunspot combined with CRISPRa was used to determine elevated mRNA molecules. Results: Our results showed that manipulating the expression of fluorescent proteins and sgRNA increased the efficiency of RNA imaging in cells. CRISPR-Sunspot could target endogenous mRNAs in the cytoplasm and amplified signals from single-molecule mRNA. Furthermore, CRISPR-Sunspot was also applied to visualize mRNA distributions with its regulating proteins in neurons. CRISPR-Sunspot detected the co-localization of Camk2a mRNA with overexpressed Xlr3b proteins in the neuronal dendrites. Moreover, we also manipulated CRISPR-Sunspot to detect transcriptional activation of target gene such as HBG1 in live cells. Conclusion: Our findings suggest that CRISPR-Sunspot is a novel applicable imaging tool for visualizing the distributions of low-abundance mRNAs in cells. This study provides a novel strategy to unravel the molecular mechanisms of diseases caused by aberrant mRNA molecules.


Subject(s)
CRISPR-Cas Systems/genetics , Intravital Microscopy/methods , Molecular Imaging/methods , RNA, Messenger/metabolism , Single Molecule Imaging/methods , Animals , Cell Line, Tumor , Embryo, Mammalian , Female , Fetal Hemoglobin/genetics , HEK293 Cells , Humans , Microscopy, Confocal/methods , Neurons , Primary Cell Culture , RNA, Guide, Kinetoplastida/genetics , RNA, Messenger/genetics , Rats , Transcriptional Activation , Transfection
2.
RSC Adv ; 9(51): 29726-29733, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-35531519

ABSTRACT

Transition metal borides are a kind of potential materials for high-temperature solar thermal applications. In this work, a novel SS/HfB2/Al2O3 tandem absorber was prepared, which exhibited high solar spectrum selectivity (α/ε) of 0.920/0.109. The optical constants of the coating were obtained using spectroscopic ellipsometry, and the dispersion model of the HfB2 layer was modeled with the Tauc-Lorentz dispersion formula. In addition, the reflectance spectrum simulated by the CODE software corroborated well with the experimental results. The thermal stability test indicated that the HfB2/Al2O3 solar absorber coating was thermally stable in vacuum at 600 °C for 2 h. When extending the annealing time to 100 h, the coating could maintain high spectral selectivity after aging at 500 °C irrespective of whether in air or vacuum. All these results indicate that the coating has good solar selectivity and is a promising candidate for high-temperature solar thermal applications.

3.
Dalton Trans ; 45(6): 2720-39, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26745008

ABSTRACT

Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite.

4.
Dalton Trans ; 44(3): 1023-38, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25407395

ABSTRACT

A simple and convenient approach denoted as gel-deposition-precipitation (G-D-P) for the preparation of core-shell-like silica@nickel species nanoparticles was studied systematically. Core-shell-like silica@nickel species nanoparticles consisted of a Si-rich core and a Ni-rich shell. The G-D-P process included two steps: one was the deposition-precipitation of nickel over the gelled colloidal silica particle, generating core-shell-like silica@nickel species nanoparticles, and the other was the aging period. It was found that the nickel phyllosilicate layer was formed mainly during the aging period and served as the protective cover to resist against aggregation of the nanoparticles, which could be utilized for regulating the dispersion of nickel over the silica@nickel species nanoparticles. In the present paper, the silica@nickel species nanoparticles were used as the catalysts for preparing catechol via dehydrogenation of 1,2-cyclohexanediol. Their catalytic activity and long-term stability were compared to those of a catalyst prepared by a conventional deposition-precipitation (D-P) approach. The higher activity and better stability of the title reaction over the silica@nickel species nanoparticles catalyst prepared by G-D-P than those over the catalyst prepared by D-P could be due to the higher dispersion of metallic nickel stabilized by the layers of nickel phyllosilicates. Moreover, it was found that the dehydrogenation of 1,2-cyclohexanediol to catechol was a structurally sensitive reaction.

SELECTION OF CITATIONS
SEARCH DETAIL