Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 363
Filter
1.
J Proteome Res ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171377

ABSTRACT

Ribosome profiling and mass spectrometry have revealed thousands of previously unannotated small and alternative open reading frames (sm/alt-ORFs) that are translated into micro/alt-proteins in mammalian cells. However, their prevalence across human tissues and biological roles remains largely undefined. The placenta is an ideal model for identifying unannotated microproteins and alt-proteins due to its considerable protein diversity that is required to sustain fetal development during pregnancy. Here, we profiled unannotated microproteins and alt-proteins in human placental tissues from preeclampsia patients or healthy individuals by proteomics, identified 52 unannotated microproteins or alt-proteins, and demonstrated that five microproteins can be translated from overexpression constructs in a heterologous cell line, although several are unstable. We further demonstrated that one microprotein, XRCC6P1, associates with translation initiation factor eIF3 and negatively regulates translation when exogenously overexpressed. Thus, we revealed a hidden sm/alt-ORF-encoded proteome in the human placenta, which may advance the mechanism studies for placenta development as well as placental disorders such as preeclampsia.

2.
Int Immunopharmacol ; 140: 112801, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39121608

ABSTRACT

AIM: The degradation of the cartilage endplate (CEP) plays a critical role in the initiation and progression of intervertebral disc degeneration (IVDD), a disease closely associated with inflammation and oxidative stress. Naringin (NGN), a flavonoid compound derived from citrus fruits, has been shown to exhibit significant anti-inflammatory and antioxidant properties. This suggests a promising avenue for NGN's application in IVDD therapy. This study aims to elucidate the therapeutic effects and underlying mechanisms of NGN on CEP degeneration, contributing to the formulation of evidence-based treatment strategies for IVDD. METHODS: In vivo, we developed an intervertebral disc degeneration (IVDD) model in mice by excising the bilateral facet joints and surrounding ligaments, and evaluated the effects of naringin using HE staining and Micro-CT analysis. In vitro, endplate chondrocytes were isolated and subjected to TBHP to replicate the IVDD pathological condition. The protective effects of NGN on these cells were confirmed through immunofluorescence, Western Blot, and flow cytometry. RESULTS: In vivo, NGN effectively mitigated IVDD progression and CEP calcification in mice. In vitro, NGN enhanced mitophagy and suppressed NLRP3 inflammasome activation through the SIRT3/FOXO3a/Parkin pathway. Furthermore, NGN safeguarded chondrocytes against apoptosis and calcification triggered by oxidative stress, in addition to mitigating the degradation of the extracellular matrix. However, silencing SIRT3 negated NGN's protective influence on chondrocytes. CONCLUSION: Our study demonstrated that NGN effectively shields chondrocytes from apoptosis and NLRP3 inflammasome activation by facilitating SIRT3-mediated mitophagy. These insights could pave the way for innovative approaches in the prevention and management of IVDD.

3.
Angew Chem Int Ed Engl ; : e202408686, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118193

ABSTRACT

ß-Branched chiral amines with contiguous stereocenters are valuable building blocks for preparing various biologically active molecules. However, their asymmetric synthesis remains challenging. Herein, we report a highly diastereo- and enantioselective biocatalytic approach for preparing a broad range of ß-branched chiral amines starting from their corresponding racemic ketones. This involves a dynamic kinetic resolution-asymmetric reductive amination process catalyzed using only an imine reductase. Four rounds of protein engineering endowed wild-type PocIRED with higher reactivity, better stereoselectivity, and a broader substrate scope. Using the engineered enzyme, various chiral amine products were synthesized with up to >99.9% ee, >99:1 dr, and >99% conversion. The practicability of the developed biocatalytic method was confirmed by producing a key intermediate of tofacitinib in 74% yield, >99.9% ee, and 98:2 dr at a challenging substrate loading of 110 g L-1. Our study provides a highly capable imine reductase and a protocol for developing an efficient biocatalytic dynamic kinetic resolution-asymmetric reductive amination reaction system.

4.
Plant Methods ; 20(1): 131, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39169365

ABSTRACT

Fungal diseases are the main factors affecting the quality and production of vegetables. Rapid and accurate detection of pathogenic spores is of great practical significance for early prediction and prevention of diseases. However, there are some problems with microscopic images collected in the natural environment, such as complex backgrounds, more disturbing materials, small size of spores, and various forms. Therefore, this study proposed an improved detection method of GCS-YOLOv8 (Global context and CARFAE and Small detector-optimized YOLOv8), effectively improving the detection accuracy of small-target pathogen spores in natural scenes. Firstly, by adding a small target detection layer in the network, the network's sensitivity to small targets is enhanced, and the problem of low detection accuracy of the small target is effectively improved. Secondly, Global Context attention is introduced in Backbone to optimize the CSPDarknet53 to 2-Stage FPN (C2F) module and model global context information. At the same time, the feature up-sampling module Content-Aware Reassembly of Features (CARAFE) was introduced into Neck to enhance the ability of the network to extract spore features in natural scenes further. Finally, we used an Explainable Artificial Intelligence (XAI) approach to interpret the model's predictions. The experimental results showed that the improved GCS-YOLOv8 model could detect the spores of the three fungi with an accuracy of 0.926 and a model size of 22.8 MB, which was significantly superior to the existing model and showed good robustness under different brightness conditions. The test on the microscopic images of the infection structure of cucumber down mildew also proved that the model had good generalization. Therefore, this study realized the accurate detection of pathogen spores in natural scenes and provided feasible technical support for early predicting and preventing fungal diseases.

5.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2418-2431, 2024 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-39174462

ABSTRACT

Glycolic acid is an important chemical product widely used in various fields, including cosmetics, detergents, textiles, and more. Currently, microbial production of glycolic acid has disadvantages such as poor genetic stability, low yield, and high cost. Additionally, whole-cell catalytic production of glycolic acid typically requires the addition of relatively expensive sorbitol as a carbon source, which limits its industrial production. To develop an industrially applicable method for glycolic acid production, this study used ethylene glycol as a substrate to screen the glycolic acid-producing strains through whole-cell catalysis, obtaining a Rhodotorula sp. capable of producing glycolic acid. The strain was then subjected to UV mutagenesis and high throughput screening, and the positive mutant strain RMGly-20 was obtained. After optimization in shake flasks, the glycolic acid titer of RMGly-20 reached 17.8 g/L, a 10.1-fold increase compared to the original strain. Using glucose as the carbon source and employing a fed-batch culture in a 5 L fermenter, strain RMGly-20 produced 61.1 g/L of the glycolic acid. This achievement marks the preliminary breeding of a genetically stable glycolic acid-producing strain using a cheap carbon source, providing a new host for the biosynthesis of glycolic acid and promoting further progress toward industrial production.


Subject(s)
Fermentation , Glycolates , Rhodotorula , Glycolates/metabolism , Rhodotorula/metabolism , Rhodotorula/genetics , Industrial Microbiology/methods , Ethylene Glycol/metabolism , Mutagenesis
7.
Curr Med Chem ; 31(28): 4549-4561, 2024.
Article in English | MEDLINE | ID: mdl-38994652

ABSTRACT

AIM: To explore an exosome-relevant molecular classification in lung adenocarcinoma (LUAD). BACKGROUND: Exosome genes or relevant non-coding RNAs are regulators of cancer treatment and prognosis, but their function in LUAD has not yet been determined. OBJECTIVE: Unraveling a molecular classification applying exosome-related RNA networks for LUAD prognosis evaluation. METHODS: MicroRNA sequencing data (miRNAs-seq) and RNA sequencing data (RNA- seq) were derived from The Cancer Genome Atlas (TCGA). The ConsensusCluster- Plus package was used for molecular typing in LUAD based on 121 Exosome-related genes. Then, a limma package was conducted to explore differentially expressed mRNAs (DEmRNAs), differentially expressed miRNAs (DEmiRNAs) and differentially expressed lncRNAs (DElncRNAs) in molecular typing for constructing an Exosome-driven competing endogenous RNA network (ceRNA). Dominant miRNAs, as well as target mRNAs, were identified by COX modeling and Kaplan-Meier survival analysis. RESULTS: Two Exosome-associated molecular clusters classified in LUAD. The C2 cluster favored high clinicopathology and showed a trend toward poor prognosis. 29 lncRNA- miRNA and 12 miRNA-mRNA interaction pairs were identified. The hsa-miR-429 was the pivotal miRNA in the network that affected the prognosis of LUAD. According to the interaction relationship and LUAD prognostic role, SNHG6-hsa- miR-429-CHRDL1/CCNA2 was identified. SNHG6-hsa-miR-429-CHRDL1 exerts oncogenic effects, and SNHG6-hsa-miR-429- CCNA2 exerts pro-oncogenic effects. CONCLUSION: Overall, our study identified an Exosome-driven ceRNA network in LUAD, and the SNHG6-hsa-miR-429-CHRDL1/CCNA2 axis could be a new therapeutic target for LUAD and our study provides new insights into the molecular mechanisms of LUAD.


Subject(s)
Adenocarcinoma of Lung , Exosomes , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Exosomes/metabolism , Exosomes/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/diagnosis , Prognosis , Gene Expression Regulation, Neoplastic , Cyclin A2
8.
Front Microbiol ; 15: 1394775, 2024.
Article in English | MEDLINE | ID: mdl-38946905

ABSTRACT

Introduction: Acinetobacter baumannii (A. baumannii) is an important opportunistic pathogen causing nosocomial infection in the clinic. The occurrence rate of antibiotic resistance is increasing year by year, resulting in a highly serious situation of bacterial resistance. Methods: To better understand the local epidemiology of multidrug-resistant A. baumannii, an investigation was conducted on the antibiotic resistance of different types of A. baumannii and its relationship with the genes of A. baumannii. Furthermore, the molecular mechanism underlying antibiotic resistance in A. baumannii was investigated through transcriptome analysis. Results: These results showed that a total of 9 STs were detected. It was found that 99% of the strains isolated in the hospital belonged to the same STs, and the clone complex CC208 was widely distributed in various departments and all kinds of samples. Furthermore, these A. baumannii strains showed high resistance to ertapenem, biapenem, meropenem, and imipenem, among which the resistance to ertapenem was the strongest. The detection rate of bla OXA-51 gene in these carbapenem resistance A. baumannii (CRAB) reached 100%; Additionally, the transcriptome results showed that the resistance genes were up-regulated in resistance strains, and these genes involved in biofilm formation, efflux pumps, peptidoglycan biosynthesis, and chaperonin synthesis. Discussion: These results suggest that the CC208 STs were the main clonal complex, and showed high carbapenem antibiotic resistance. All these resistant strains were distributed in various departments, but most of them were distributed in intensive care units (ICU). The bla OXA-23 was the main antibiotic resistance genotype; In summary, the epidemic trend of clinical A. baumannii in Guiyang, China was analyzed from the molecular level, and the resistance mechanism of A. baumannii to carbapenem antibiotics was analyzed with transcriptome, which provided a theoretical basis for better control of A. baumannii.

9.
PLoS Pathog ; 20(7): e1012425, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39078849

ABSTRACT

Pathogenic bacteria's metabolic adaptation for survival and proliferation within hosts is a crucial aspect of bacterial pathogenesis. Here, we demonstrate that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, plays a key role as a regulator of gene expression in Staphylococcus aureus. We show that citrate activates the transcriptional regulator CcpE and thus modulates the expression of numerous genes involved in key cellular pathways such as central carbon metabolism, iron uptake and the synthesis and export of virulence factors. Citrate can also suppress the transcriptional regulatory activity of ferric uptake regulator. Moreover, we determined that accumulated intracellular citrate, partly through the activation of CcpE, decreases the pathogenic potential of S. aureus in animal infection models. Therefore, citrate plays a pivotal role in coordinating carbon metabolism, iron homeostasis, and bacterial pathogenicity at the transcriptional level in S. aureus, going beyond its established role as a TCA cycle intermediate.


Subject(s)
Carbon , Citric Acid , Gene Expression Regulation, Bacterial , Homeostasis , Iron , Staphylococcal Infections , Staphylococcus aureus , Staphylococcus aureus/metabolism , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Iron/metabolism , Carbon/metabolism , Citric Acid/metabolism , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Citric Acid Cycle , Mice , Signal Transduction
10.
Ir J Med Sci ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878140

ABSTRACT

OBJECTIVE: A few clinical studies have been conducted on the prognostic value of the Essen score in acute cerebral infarction (ACI), and this study explores whether the Essen score can assess the prognosis of ACI. METHODS: Data were collected from 1176 patients with ACI. The patients were divided into three groups on the basis of the Essen score, with groups 1, 2 and 3 having scores of 0-2, 3-6 and 7-9, respectively. Logistic multivariate analysis was performed to analyse the predictors of poor prognosis in patients with ACI. The X2 trend test was used to compare the poor-prognosis groups on the basis of the Essen score. The receiver operating characteristic (ROC) curve of patient prognosis was plotted using MedCalc software, and the area under the ROC curve (AUC) was calculated. P < 0.05 was considered statistically significant. RESULTS: Multivariate analysis of the good- and poor-prognosis groups of ACI showed that the Essen score and the male gender were predictors of poor prognosis. The X2 trend test was used to compare the poor-prognosis groups on the basis of the Essen score, and results suggested that the higher the Essen score was, the worse the prognosis was. The Essen score assessed the prognosis of ACI with an AUC of 0.787 and P < 0.001. CONCLUSION: The Essen score is a valuable scoring system for predicting the prognosis of patients with ACI.

11.
Langmuir ; 40(26): 13467-13475, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889438

ABSTRACT

Because of the deep and zigzag microporous structure, porous carbon materials exhibit inferior capacitive performance and sluggish electrochemical kinetics for supercapacitor electrode materials. Herein, a single-step carbonation and activation approach was utilized to synthesize coal-based porous carbon with an adjustable pore structure, using CaO as a hard template, KOH as an activator, and oxidized coal as precursors to carbon. The obtained sample possesses an interconnected and hierarchical porous structure, higher SSA (1060 m2 g-1), suitable mesopore volume (0.25 cm3 g-1), and abundant surface heteroatomic functional groups. Consequently, the synthesized carbon exhibits an exceptionally high specific capacitance of 323 F g-1 at 1 A g-1, along with 80.3% capacitance retention at 50 A g-1. The assembled two-electrode configuration demonstrates a remarkable capacitance retention of up to 95% and achieves Coulombic efficiency of nearly 100% with 10,000 cycles in a 6 M KOH electrolyte. Furthermore, the Zn-ion hybrid capacitor also exhibits a specific capacity of up to 139.1 mA h g-1 under conditions of 0.2 A g-1. This work offers a simple method in preparation of coal-based porous carbon with controllable pore structure.

12.
Opt Express ; 32(11): 19567-19577, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859089

ABSTRACT

Chalcogenide glass has achieved great success in manufacturing axial-type infrared gradient refractive index (IR-GRIN) lenses. However, studies on radial-type IR-GRIN lenses, which are more ideal for optical design, remain rare. The present study introduces what we believe to be a new method for preparing radial IR-GRIN lens by creating high refractive index (n) In2S3 nanocrystals within a 65GeS2-25In2S3-10CsCl (GIC, in molar percentage) glass matrix. Upon introduction of multi-temperature field manipulation, we have successfully achieved central crystallization and simultaneous gradient attenuation spreading toward the edge within GIC glass, providing a radial GRIN profile with Δn over 0.1 while maintaining excellent IR transparency. In addition, the optical and structural properties of the GIC GRIN samples were characterized. The relationship between Raman intensity and the n of glass ceramics at different heat treatment temperatures was investigated, thereby enabling the indirect confirmation of the presence of radial gradient crystallization within the prepared GIC GRIN samples through Raman intensity. Multiple experimental results have shown that this approach has excellent reproducibility and potential for large-scale productions.

13.
Int J Biol Macromol ; 270(Pt 1): 131949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749890

ABSTRACT

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.


Subject(s)
Myeloid-Derived Suppressor Cells , Reishi , Spores, Fungal , Triple Negative Breast Neoplasms , Tumor Microenvironment , beta-Glucans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Animals , Myeloid-Derived Suppressor Cells/drug effects , Myeloid-Derived Suppressor Cells/metabolism , Myeloid-Derived Suppressor Cells/immunology , Mice , beta-Glucans/pharmacology , beta-Glucans/chemistry , Reishi/chemistry , Female , Tumor Microenvironment/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Lectins, C-Type
14.
Syst Rev ; 13(1): 145, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816878

ABSTRACT

BACKGROUND: Functional endoscopic sinus surgery is a principal option for treating chronic rhinosinusitis with nasal polyps (CRSwNP) after medication failures. Unfortunately, some patients still have unsatisfactory postoperative recovery. The type of inflammatory cell infiltration in nasal polyp tissue has been reported available for recurrence prediction. As it is invasive and time-consuming, this technique is hard to promote clinically under the existing technical conditions. And during the course of clinical treatment, we have noted that differences in the postoperative recurrence rate of patients present among different traditional Chinese medicine syndrome types. METHODS AND ANALYSIS: This is a non-randomized, single-center, and prospective cohort study started in Chengdu Sichuan Province, People's Republic of China, in January 2021. A total of 200 participants will be recruited from patients who are diagnosed with CRSwNP and prepared for functional endoscopic sinus surgery. We collect preoperative data which includes general information, medical history, TCM syndromes, visual analogue scale (VAS) of subjective symptoms, Lund-Kennedy endoscopic score, and Lund-Mackay score of computed tomography (CT) scanning of sinuses. We acquire the VAS score and Lund-Kennedy score of subjective symptoms through multiple planned follow-up after surgery. After 1 year of follow-up, the recurrence rate will be calculated, and the curative effect will be assessed. Meanwhile, the patients' pathological sections will be sorted out, and inflammatory cell infiltration will be analyzed. Statistical analysis will be carried out to evaluate the correlation among CRSwNP recurrence and TCM syndrome types and tissue inflammatory cell infiltration types. Then we will establish a predictive model for CRSwNP recurrence. Analyses of survey data include descriptive and inferential statistical approaches. DISCUSSION: This is the first prospective cohort study on investigating the correlation of CRSwNP recurrence with TCM syndrome types and tissue inflammatory cell infiltration types. Through this study, we hope to discover a new and simple, effective, and noninvasive way to predict the recurrence rate rapidly after CRSwNP and provide reference for the intervention timing of traditional Chinese medicine application, thereby achieving customized diagnosis and treatment, minimizing risks of surgical events, and delaying postoperative recurrence of CRSwNP. SYSTEMATIC REVIEW REGISTRATION: PROSPERO ChiCTR2100041646.


Subject(s)
Medicine, Chinese Traditional , Nasal Polyps , Recurrence , Rhinitis , Sinusitis , Humans , Medicine, Chinese Traditional/methods , Nasal Polyps/surgery , Nasal Polyps/pathology , Sinusitis/surgery , Prospective Studies , Chronic Disease , Rhinitis/surgery , Rhinitis/pathology , Inflammation , Endoscopy/methods , Syndrome
15.
Article in English | MEDLINE | ID: mdl-38692348

ABSTRACT

Heat stress seriously threatens fish survival and health, demanding immediate attention. Teprenone is a gastric mucosal protective agent that can induce heat shock protein expression. This research investigated the effects of teprenone on largemouth bass (Micropterus salmoides) subjected to heat stress. Juvenile fish were assigned to different groups: group C (control group, 0 mg teprenone/kg diet), T0, T200, T400, and T800 (0, 200, 400, and 800 mg teprenone/kg diet, respectively), which were fed for 3 days, followed by a day without the diet. All groups except group C were subjected to acute heat stress (from 24 °C to 35 °C at 1 °C per hour and then maintained at 35 °C for 3 h). The results were as follows: The critical thermal maxima were significantly higher in the T200, T400, and T800 groups compared with the T0 group (P < 0.05). Heat stress caused severe damage to the tissue morphology of the liver, while teprenone significantly reduced this injury (P < 0.05). Serum cortisol concentration decreased gradually as teprenone concentration increased, and the lowest concentration was observed in the T800 group (P < 0.05). Compared with the T0 group, the serum activities of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase were significantly lower in the T200, T400, and T800 groups (P < 0.05). The liver activities of catalase, total superoxide dismutase, and peroxidase were significantly higher in the T200 group than in the T0 group (P < 0.05). Transcript levels of the heat shock proteins (hsp90, hsp70, hspa5, and hsf1) and caspase family (caspase3 and caspase9) in the liver of the T200 group were significantly higher than those of the T0 group (P < 0.05). Western blot results showed that HSP70 and HSPA5 in the liver were significantly upregulated in the T200 group compared with the T0 group (P < 0.05). In summary, dietary teprenone improved thermal tolerance, alleviated heat stress damage in the liver, enhanced antioxidant capacity, and upregulated heat shock proteins in juvenile largemouth bass. This study offers theoretical support for applying teprenone in aquaculture to reduce financial losses caused by abiotic factors.


Subject(s)
Bass , Diterpenes , Heat-Shock Response , Liver , Animals , Liver/drug effects , Liver/metabolism , Liver/pathology , Heat-Shock Response/drug effects , Diterpenes/pharmacology , Dietary Supplements , Fish Proteins/metabolism , Fish Proteins/genetics , Animal Feed/analysis , Diet , Thermotolerance/drug effects
16.
ACS Appl Mater Interfaces ; 16(23): 30306-30313, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38819016

ABSTRACT

Beyond traditional paper, multifunctional nanopaper has received much attention in recent years. Currently, many nanomaterials have been successfully used as building units of nanopaper. However, it remains a great challenge to prepare flexible and freestanding metal-organic framework (MOF) nanopaper owing to the low aspect ratio and brittleness of MOF nanocrystals. Herein, this work develops a flexible and free-standing MOF nanopaper with MOF nanowires as building units. The manganese-based MOF (Mn-MOF) nanowires with lengths up to 100 µm are synthesized by a facile solvothermal method. Through a paper-making technique, the Mn-MOF nanowires interweave with each other to form a three-dimensional architecture, thus creating a flexible and free-standing Mn-MOF nanowire paper. Furthermore, the surface properties can be engineered to obtain high hydrophobicity by modifying polydimethylsiloxane (PDMS) on the surfaces of the Mn-MOF nanowire paper. The water contact angle reaches 130°. As a proof of concept, this work presents two potential applications of the Mn-MOF/PDMS nanowire paper: (i) The as-prepared Mn-MOF/PDMS nanowire paper is compatible with a commercial printer. The as-printed colorful patterns are of high quality, and (ii) benefiting from the highly hydrophobic surfaces, the Mn-MOF/PDMS nanowire paper is able to efficiently separate oil from water.

17.
J Med Chem ; 67(11): 8791-8816, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38775356

ABSTRACT

The spread of the influenza virus has caused devastating pandemics and huge economic losses worldwide. Antiviral drugs with diverse action modes are urgently required to overcome the challenges of viral mutation and drug resistance, and targeted protein degradation strategies constitute excellent candidates for this purpose. Herein, the first degradation of the influenza virus polymerase acidic (PA) protein using small-molecule degraders developed by hydrophobic tagging (HyT) technology to effectively combat the influenza virus was reported. The SAR results revealed that compound 19b with Boc2-(L)-Lys demonstrated excellent inhibitory activity against A/WSN/33/H1N1 (EC50 = 0.015 µM) and amantadine-resistant strain (A/PR/8/H1N1), low cytotoxicity, high selectivity, substantial degradation ability, and good drug-like properties. Mechanistic studies demonstrated that the proteasome system and autophagic lysosome pathway were the potential drivers of these HyT degraders. Thus, this study provides a powerful tool for investigating the targeted degradation of influenza virus proteins and for antiviral drug development.


Subject(s)
Antiviral Agents , Hydrophobic and Hydrophilic Interactions , Thiourea , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Humans , Dogs , Animals , Thiourea/pharmacology , Thiourea/analogs & derivatives , Thiourea/chemistry , Structure-Activity Relationship , Influenza A Virus, H1N1 Subtype/drug effects , Madin Darby Canine Kidney Cells , Proteolysis/drug effects , Viral Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/antagonists & inhibitors , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism , Drug Resistance, Viral/drug effects
18.
Mitochondrial DNA B Resour ; 9(5): 683-686, 2024.
Article in English | MEDLINE | ID: mdl-38800623

ABSTRACT

Calystegia hederacea Wall. in Roxb. 1824 is a perennial herbaceous vine in the family Convolvulaceae and has several biological effects. Herein, we reported the first complete chloroplast genome of C. hederacea. The chloroplast genome sequence was 152,057 bp in length, comparing a large single-copy (LSC) region of 87,891 bp, a small single-copy (SSC) region of 19,866 bp, and a pair of inverted repeat (IR) regions of 22,150 bp. This sequenced chloroplast genome contained 126 predicted genes, including 81 protein-coding genes, 37 tRNA genes, and eight rRNA genes, and the total GC content of the chloroplast genome was 37.79%. Phylogenetic analysis revealed that C. hederacea was closely related to C. soldanella. The chloroplast genome presented in this study will enrich the genome information of the genus Calystegia and provide deeper insights into the evolution study of the family Convolvulaceae.

19.
Histochem Cell Biol ; 161(6): 493-506, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613646

ABSTRACT

Lung adenocarcinoma (LUAD) is a subtype of lung cancer with high incidence and mortality globally. Emerging evidence suggests that circular RNAs (circRNAs) exert critical functions in human cancers, including LUAD. CircRNA_100549 (circ_100549) has been reported to be significantly upregulated in non-small cell lung cancer (NSCLC) samples, while its role in modulating LUAD progression remains to be explored. The current study aims at investigating the functional roles of circ_100549 in LUAD and its downstream molecular mechanism. First, we found that the expression of circ_100549 was higher in LUAD cell lines. Loss-of-function assays verified that depletion of circ_100549 repressed LUAD cell proliferation but accelerated cell apoptosis. Furthermore, in vivo experiments demonstrated that silencing of circ_100549 suppressed tumor growth. Subsequently, based on database analysis, we carried out a series of experiments to explore the mechanisms and effects of circ_100549 underlying LUAD progression, including RNA-binding protein immunoprecipitation (RIP), RNA/DNA pull-down, luciferase reporter, and chromatin immunoprecipitation (ChIP) assays. The results indicated that circ_100549 serves as a ceRNA by sponging miR-95-5p to upregulate BPTF expression, thus upregulating BIRC6 expression at a transcriptional level in LUAD. In summary, our study demonstrated that circ_100549 facilitates LUAD progression by upregulating BIRC6 expression.


Subject(s)
Adenocarcinoma of Lung , Inhibitor of Apoptosis Proteins , Lung Neoplasms , RNA, Circular , Up-Regulation , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Mice , Inhibitor of Apoptosis Proteins/metabolism , Inhibitor of Apoptosis Proteins/genetics , Cell Proliferation , Apoptosis , Mice, Nude , Animals , Disease Progression , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice, Inbred BALB C
20.
BMC Genomics ; 25(1): 372, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627613

ABSTRACT

BACKGROUND: Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS: We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS: This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.


Subject(s)
Dalbergia , RNA, Long Noncoding , Wood/genetics , Wood/metabolism , Dalbergia/genetics , Dalbergia/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Seq , Alternative Splicing , Protein Isoforms/genetics , Terpenes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL