Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38700965

ABSTRACT

In this article, a distributed fault estimation (DFE) approach for switched interconnected nonlinear systems (SINSs) with time delays and external disturbances is proposed using a novel segmented iterative learning scheme (SILS). First, through the utilization of interrelated information among subsystems, a distributed iterative learning observer is developed to enhance the accuracy of fault estimation results, which can realize the fault estimation of all subsystems under time delays and external disturbances. Simultaneously, to facilitate rapid fault information tracking and significantly reduce sensitivity to interference, a new SILS-based fault estimation law is constructed by combining the idea of segmented design with the method of variable gain. Then, an assessment of the convergence of the established fault estimation methodology is conducted, and the configurations of observer gain matrices and iterative learning gain matrices are duly accomplished. Finally, simulation results are showcased to demonstrate the superiority and feasibility of the developed fault estimation approach.

2.
IEEE Trans Cybern ; PP2024 May 22.
Article in English | MEDLINE | ID: mdl-38776193

ABSTRACT

Fault-tolerant control (FTC) is vital for the safety and reliability of automatic systems. Most of the existing FTC methods are developed for open-loop systems subject to additive faults, regardless of the widely present control loops and multiplicative faults within systems. In this article, a performance-based FTC strategy is proposed for the closed-loop systems with multiplicative faults. Considering the high efforts in modeling complex systems, the proposed FTC strategy is realized in the data-driven context. Specifically, a nominal feedback-feedforward controller is first established for the fault-free systems. By selecting the system stability and reference tracking behavior as the key performance indices, two performance evaluators are constructed to detect and classify the occurred multiplicative faults based on the fault-induced effects on the system performance. Then, with the aid of the coprime factorization technique, the multiplicative faults, in the form of additive perturbations to the system coprime factors, are estimated utilizing the closed-loop process data. Furthermore, based on the fault knowledge, a hierarchical fault-tolerant tracking controller is developed according to the levels of system performance degradations, where the functional controller parameters are reconfigured with different priorities. Finally, case studies are provided to validate the effectiveness of the proposed method.

3.
EMBO J ; 43(9): 1722-1739, 2024 May.
Article in English | MEDLINE | ID: mdl-38580775

ABSTRACT

Understanding the regulatory mechanisms facilitating hematopoietic stem cell (HSC) specification during embryogenesis is important for the generation of HSCs in vitro. Megakaryocyte emerged from the yolk sac and produce platelets, which are involved in multiple biological processes, such as preventing hemorrhage. However, whether megakaryocytes regulate HSC development in the embryonic aorta-gonad-mesonephros (AGM) region is unclear. Here, we use platelet factor 4 (PF4)-Cre;Rosa-tdTomato+ cells to report presence of megakaryocytes in the HSC developmental niche. Further, we use the PF4-Cre;Rosa-DTA (DTA) depletion model to reveal that megakaryocytes control HSC specification in the mouse embryos. Megakaryocyte deficiency blocks the generation and maturation of pre-HSCs and alters HSC activity at the AGM. Furthermore, megakaryocytes promote endothelial-to-hematopoietic transition in a OP9-DL1 coculture system. Single-cell RNA-sequencing identifies megakaryocytes positive for the cell surface marker CD226 as the subpopulation with highest potential in promoting the hemogenic fate of endothelial cells by secreting TNFSF14. In line, TNFSF14 treatment rescues hematopoietic cell function in megakaryocyte-depleted cocultures. Taken together, megakaryocytes promote production and maturation of pre-HSCs, acting as a critical microenvironmental control factor during embryonic hematopoiesis.


Subject(s)
Hematopoietic Stem Cells , Megakaryocytes , Animals , Megakaryocytes/cytology , Megakaryocytes/metabolism , Mice , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Hematopoiesis/physiology , Mesonephros/embryology , Mesonephros/metabolism , Mesonephros/cytology , Endothelial Cells/metabolism , Endothelial Cells/cytology , Coculture Techniques
4.
ISA Trans ; 148: 1-11, 2024 May.
Article in English | MEDLINE | ID: mdl-38429141

ABSTRACT

In this paper, the robust adaptive optimal tracking control problem is addressed for the disturbed unmanned helicopter based on the time-varying gain extended state observer (TVGESO) and adaptive dynamic programming (ADP) methods. Firstly, a novel TVGESO is developed to tackle the unknown disturbance, which can overcome the drawback of initial peaking phenomenon in the traditional linear ESO method. Meanwhile, compared with the nonlinear ESO, the proposed TVGESO possesses easier and rigorous stability analysis process. Subsequently, the optimal tracking control issue for the original unmanned helicopter system is transformed into an optimization stabilization problem. By means of the ADP and neural network techniques, the feedforward controller and optimal feedback controller are skillfully designed. Compared with the conventional backstepping approach, the designed anti-disturbance optimal controller can make the unmanned helicopter accomplish the tracking task with less energy. Finally, simulation comparisons demonstrate the validity of the developed control scheme.

5.
Nat Commun ; 15(1): 2255, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490977

ABSTRACT

An understanding of the mechanisms regulating embryonic hematopoietic stem cell (HSC) development would facilitate their regeneration. The aorta-gonad-mesonephros region is the site for HSC production from hemogenic endothelial cells (HEC). While several distinct regulators are involved in this process, it is not yet known whether macroautophagy (autophagy) plays a role in hematopoiesis in the pre-liver stage. Here, we show that different states of autophagy exist in hematopoietic precursors and correlate with hematopoietic potential based on the LC3-RFP-EGFP mouse model. Deficiency of autophagy-related gene 5 (Atg5) specifically in endothelial cells disrupts endothelial to hematopoietic transition (EHT), by blocking the autophagic process. Using combined approaches, including single-cell RNA-sequencing (scRNA-seq), we have confirmed that Atg5 deletion interrupts developmental temporal order of EHT to further affect the pre-HSC I maturation, and that autophagy influences hemogenic potential of HEC and the formation of pre-HSC I likely via the nucleolin pathway. These findings demonstrate a role for autophagy in the formation/maturation of hematopoietic precursors.


Subject(s)
Hemangioblasts , Hematopoietic Stem Cells , Animals , Mice , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Embryo, Mammalian , Hematopoiesis/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mesonephros
6.
IEEE Trans Neural Netw Learn Syst ; 35(3): 2969-2983, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37467093

ABSTRACT

Over the last decade, transfer learning has attracted a great deal of attention as a new learning paradigm, based on which fault diagnosis (FD) approaches have been intensively developed to improve the safety and reliability of modern automation systems. Because of inevitable factors such as the varying work environment, performance degradation of components, and heterogeneity among similar automation systems, the FD method having long-term applicabilities becomes attractive. Motivated by these facts, transfer learning has been an indispensable tool that endows the FD methods with self-learning and adaptive abilities. On the presentation of basic knowledge in this field, a comprehensive review of transfer learning-motivated FD methods, whose two subclasses are developed based on knowledge calibration and knowledge compromise, is carried out in this survey article. Finally, some open problems, potential research directions, and conclusions are highlighted. Different from the existing reviews of transfer learning, this survey focuses on how to utilize previous knowledge specifically for the FD tasks, based on which three principles and a new classification strategy of transfer learning-motivated FD techniques are also presented. We hope that this work will constitute a timely contribution to transfer learning-motivated techniques regarding the FD topic.

7.
IEEE Trans Cybern ; 54(5): 2798-2810, 2024 May.
Article in English | MEDLINE | ID: mdl-37279140

ABSTRACT

This study focuses on building an intelligent decision-making attention mechanism in which the channel relationship and conduct feature maps among specific deep Dense ConvNet blocks are connected to each other. Thus, develop a novel freezing network with a pyramid spatial channel attention mechanism (FPSC-Net) in deep modeling. This model studies how specific design choices in the large-scale data-driven optimization and creation process affect the balance between the accuracy and effectiveness of the designed deep intelligent model. To this end, this study presents a novel architecture unit, which is termed as the "Activate-and-Freeze" block on popular and highly competitive datasets. In order to extract informative features by fusing spatial and channel-wise information together within local receptive fields and boost the representation power, this study constructs a Dense-attention module (pyramid spatial channel (PSC) attention) to perform feature recalibration, and through the PSC attention to model the interdependence among convolution feature channels. We join the PSC attention module in the activating and back-freezing strategy to search for one of the most important parts of the network for extraction and optimization. Experiments on various large-scale datasets demonstrate that the proposed method can achieve substantially better performance for improving the ConvNets representation power than the other state-of-the-art deep models.

8.
Article in English | MEDLINE | ID: mdl-37917524

ABSTRACT

Multiagent reinforcement learning (RL) training is usually difficult and time-consuming due to mutual interference among agents. Safety concerns make an already difficult training process even harder. This study proposes a safe adaptive policy transfer RL approach for multiagent cooperative control. Specifically, a pioneer and follower off-policy policy transfer learning (PFOPT) method is presented to help follower agents acquire knowledge and experience from a single well-trained pioneer agent. Notably, the designed approach can transfer both the policy representation and sample experience provided by the pioneer policy in the off-policy learning. More importantly, the proposed method can adaptively adjust the learning weight of prior experience and exploration according to the Wasserstein distance between the policy probability distributions of the pioneer and the follower. Case studies show that the distributed agents trained by the proposed method can complete a collaborative task and acquire the maximum rewards while minimizing the violation of constraints. Moreover, the proposed method can also achieve satisfactory performance in terms of learning speed and success rate.

9.
Article in English | MEDLINE | ID: mdl-37494174

ABSTRACT

Cross-scenario monitoring requires domain generalization (DG) for changed knowledge when auxiliary information is unavailable and only one source scenario is involved. In this article, a latent representation generalizing network (LRGN) is proposed to learn transferable knowledge through generalizing the latent representations for cross-scenario monitoring in perimeter security. LRGN is composed of a sequential-variational generative adversarial network (SVGAN), a coupled SVGAN (Co-SVGAN), and a knowledge-aggregated SVGAN. First, the Co-SVGAN can learn domain-invariant latent representations to model dual-domain joint distribution of background data, which is usually sufficient in the source and target scenarios. Deceptive domain shifts are generated based on the domain-invariant latent representations without auxiliary information. Then, SVGAN models the changing knowledge by estimating the distribution of domain shifts. Furthermore, the knowledge-aggregated SVGAN can transfer the learned domain-invariant knowledge from Co-SVGAN for generalizing the latent representations through approximating the distribution of domain shifts. Accordingly, LRGN is trained by a four-phase optimization strategy for DG through generating target-scenario samples of concerned events based on the generalized latent representations. The feasibility and effectiveness of the proposed method are validated through real-field experiments of perimeter security applications in two scenarios.

10.
ISA Trans ; 141: 184-196, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37474433

ABSTRACT

Quality-related process monitoring as a supervised technology has increasingly attracted attention in complex industries. Various approaches have been studied to cope with this issue. Nevertheless, these methods cannot reasonably decompose the process variable space, resulting in deficiencies in monitoring quality-related faults. To handle this issue, this paper presents an orthogonal kernel partial least squares improved kernel least squares with a preprocessing-modeling-postprocessing (PMP) structure to implement quality-related process monitoring with more proper decomposition and more straightforward monitoring logic. Compared with the previous approaches, a nonlinear preprocessing technology is presented to eliminate the quality-unrelated knowledge of process variables, enormously enhancing the interpretability of modeling and improving the monitoring efficiency. Then, a proper decomposition is presented to decompose the kernel matrix into two orthogonal parts, significantly improving the monitoring performance. The theoretical analysis of the proposed method is provided in this paper. Finally, two cases indicate the validity and superiority of the proposed method.

11.
IEEE Trans Cybern ; 53(2): 695-706, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35507613

ABSTRACT

Missing values are ubiquitous in industrial data sets because of multisampling rates, sensor faults, and transmission failures. The incomplete data obstruct the effective use of data and degrade the performance of data-driven models. Numerous imputation algorithms have been proposed to deal with missing values, primarily based on supervised learning, that is, imputing the missing values by constructing a prediction model with the remaining complete data. They have limited performance when the amount of incomplete data is overwhelming. Moreover, many methods have not considered the autocorrelation of time-series data. Thus, an adaptive-learned median-filled deep autoencoder (AM-DAE) is proposed in this study, aiming to impute missing values of industrial time-series data in an unsupervised manner. It continuously replaces the missing values by the median of the input data and its reconstruction, which allows the imputation information to be transmitted with the training process. In addition, an adaptive learning strategy is adopted to guide the AM-DAE paying more attention to the reconstruction learning of nonmissing values or missing values in different iteration periods. Finally, two industrial examples are used to verify the superior performance of the proposed method compared with other advanced techniques.

12.
IEEE Trans Cybern ; 53(7): 4259-4269, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35417371

ABSTRACT

This article is concerned with data-driven realization of fault detection (FD) for nonlinear dynamic systems. In order to identify and parameterize nonlinear Hammerstein models using dynamic input and output data, a stacked neural network-aided canonical variate analysis (SNNCVA) method is proposed, based on which a data-driven residual generator is formed. Then, the threshold used for FD purposes is obtained via quantiles-based learning, where both estimation errors and approximation errors are considered. Compared with the existing work, the main novelties of this study include: 1) SNNCVA provides a new parameterization strategy for nonlinear Hammerstein systems by utilizing input and output data only; 2) the associated residual generator can ensure FD performance where both the system model and its nonlinearity are unknown; and 3) with consideration of modeling-induced errors, the quantiles are invoked and used to provide a reliable FD threshold in situations where only limited samples are available. Studies on a nonlinear hot rolling mill process demonstrate the effectiveness of the proposed method.


Subject(s)
Algorithms , Nonlinear Dynamics , Computer Simulation , Neural Networks, Computer
13.
IEEE Trans Neural Netw Learn Syst ; 34(9): 5244-5254, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35594236

ABSTRACT

To ensure the safety of an automation system, fault detection (FD) has become an active research topic. With the development of artificial intelligence, model-free FD strategies have been widely investigated over the past 20 years. In this work, a hybrid FD design approach that combines data-driven and model-based is developed for nonlinear dynamic systems whose information is not known beforehand. With the aid of a Takagi-Sugeno (T-S) fuzzy model, the nonlinear system can be identified through a group of least-squares-based optimization. The associated modeling errors are taken into account when designing residual generators. In addition, statistical learning is adopted to obtain an upper bound of modeling errors, based on which an optimization problem is formulated to determine a reliable FD threshold. In the online FD decision, an event-triggered strategy is also involved in saving computational costs and network resources. The effectiveness and feasibility of the proposed hybrid FD method are illustrated through two simulation studies on nonlinear systems.

14.
ISA Trans ; 135: 213-232, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36175190

ABSTRACT

Multivariate statistical process monitoring are the essential approaches to achieve better prognostics and health management (PHM) of process industries. However, incipient faults and complex behaviors (such as nonlinearity and dynamics) always render the traditional multivariate statistical process monitoring approaches inadequate. Thus, a complex-valued slow independent component analysis (CSICA) is proposed, which is able to extract optimized features from a complex-valued matrix containing both of raw data and their changing rates by resorting to a complex-valued independent component analysis operation and a batch of phase shifts. These features, named slow independent components (SICs), not only guarantee the statistical independence but also capture slowly-changing patterns, thus refining both dynamic and non-Gaussian information mostly related with incipient faults. The proposed algorithm together with novel statistics, Is2, If2 and SPE, as well as their control limits can sequentially detect incipient faults effectively. Then, together with the novel differential mapping reconstructed contribution plot (DM-RCP) and Granger causality analysis, the proposed method can accurately locate rooting causes of incipient faults. Finally, the proposed framework of process monitoring is validated through two data sets from a simulation platform and an oxidation-ditch-based wastewater treatment plant, respectively. The results demonstrate that the proposed method can achieve more accurate and efficient performances than conventional methods.

15.
Article in English | MEDLINE | ID: mdl-36074885

ABSTRACT

The increased complexity and intelligence of automation systems require the development of intelligent fault diagnosis (IFD) methodologies. By relying on the concept of a suspected space, this study develops explainable data-driven IFD approaches for nonlinear dynamic systems. More specifically, we parameterize nonlinear systems through a generalized kernel representation for system modeling and the associated fault diagnosis. An important result obtained is a unified form of kernel representations, applicable to both unsupervised and supervised learning. More importantly, through a rigorous theoretical analysis, we discover the existence of a bridge (i.e., a bijective mapping) between some supervised and unsupervised learning-based entities. Notably, the designed IFD approaches achieve the same performance with the use of this bridge. In order to have a better understanding of the results obtained, both unsupervised and supervised neural networks are chosen as the learning tools to identify the generalized kernel representations and design the IFD schemes; an invertible neural network is then employed to build the bridge between them. This article is a perspective article, whose contribution lies in proposing and formalizing the fundamental concepts for explainable intelligent learning methods, contributing to system modeling and data-driven IFD designs for nonlinear dynamic systems.

16.
Mol Biol Rep ; 49(7): 6041-6052, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35357625

ABSTRACT

BACKGROUND: Cardiomyocyte injury is a typical feature in cardiovascular diseases. Changes in cardiomyocytes strongly affect the progression of cardiovascular diseases. This work aimed to investigate the biological function and potential mechanism of action of miR-150-5p in cardiomyocytes. METHODS AND RESULTS: A myocardial ischemia (MI) injury rat model was constructed to detect miR-150-5p and tetratricopeptide repeat domain 5 (TTC5) expression during heart ischemia injury. Primary cardiomyocytes were isolated for in vitro study. CCK-8 assays were used to detect cardiomyocyte viability. Western blots were used to detect TTC5 and P53 expression. qPCR was utilized to measure RNA expression of miR-150-5p and TTC5. The TUNEL assay was used to determine cell apoptosis. ELISA was used to determine cytokine (TNF-α, IL-1ß, IL-6, and IL-8) levels in heart tissues and cell culture supernatants. A dual-luciferase reporter assay was carried out to verify the binding ability between miR-150-5p and TTC5. Oxygen-glucose deprivation (OGD) treatment significantly inhibited cell viability. Ultrasound-targeted microbubble destruction (UTMD)-mediated uptake of miR-150-5p inverted these results. Additionally, UTMD-mediated uptake of miR-150-5p retarded the effects of OGD treatment on cell apoptosis. Besides, UTMD-mediated uptake of miR-150-5p counteracted the effects of OGD treatment on the inflammatory response by regulating cytokine (TNF-α, IL-1ß, IL-6, and IL-8) levels. For the mechanism of the protective effect on the heart, we predicted and confirmed that miR-150-5p bound to TTC5 and inhibited TTC5 expression. CONCLUSIONS: UTMD-mediated uptake of miR-150-5p attenuated OGD-induced primary cardiomyocyte injury by inhibiting TTC5 expression. This discovery contributes toward further understanding the progression of primary cardiomyocyte injury.


Subject(s)
Brain Ischemia , MicroRNAs , Transcription Factors/metabolism , Animals , Apoptosis , Brain Ischemia/metabolism , Glucose/metabolism , Interleukin-6/metabolism , Interleukin-8/pharmacology , MicroRNAs/metabolism , Microbubbles , Myocytes, Cardiac/metabolism , Oxygen/metabolism , Rats , Tumor Necrosis Factor-alpha/metabolism
17.
Med Oncol ; 39(4): 44, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35092504

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma (NHL). The R-CHOP immunochemotherapy regimen is the first-line treatment option for DLBCL patients and has greatly improved the prognosis of DLBCL, making it a curable disease. However, drug resistance or relapse is the main challenge for current DLBCL treatment. Studies have shown that the tumor microenvironment plays an important role in the onset, development, and responsiveness to drugs in DLBCL. Here, we used the CIBERSORT algorithm to resolve the composition of the immune microenvironment of 471 DLBCL patients from the GEO database. We found that activated memory CD4+ T cells and γδ T cells were significantly associated with immunochemotherapy response. Weighted gene co-expression networks (WGCNA) were constructed using differentially expressed genes from immunochemotherapy responders and non-responders. The module most associated with these two types of T cells was defined as hub module. Enrichment analysis of the hub module showed that baseline immune status was significantly stronger in responders than in non-responders. A protein-protein interaction (PPI) network was constructed for hub module to identify hub genes. After survival analysis, five prognosis-related genes (CD3G, CD3D, GNB4, FCHO2, GPR183) were identified and all these genes were significantly negatively associated with PD1. Using our own patient cohort, we validated the efficacy of CD3G and CD3D in predicting immunochemotherapy response. Our study showed that CD3G, CD3D, GNB4, FCHO2, and GPR183 are involved in the regulation of the immune microenvironment of DLBCL. They can be used as biomarkers for predicting immunochemotherapy response and potential therapeutic targets in DLBCL.


Subject(s)
Biomarkers, Tumor/genetics , CD4-Positive T-Lymphocytes/immunology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Tumor Microenvironment/immunology , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Gene Expression Regulation, Neoplastic , Genetic Testing , Humans , Immunotherapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Male , Middle Aged , Prognosis , Protein Interaction Maps
18.
IEEE Trans Cybern ; 52(9): 9454-9466, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33705341

ABSTRACT

Recently, canonical correlation analysis (CCA) has been explored to address the fault detection (FD) problem for industrial systems. However, most of the CCA-based FD methods assume both Gaussianity of measurement signals and linear relationships among variables. These assumptions may be improper in some practical scenarios so that direct applications of these CCA-based FD strategies are arguably not optimal. With the aid of neural networks, this work proposes a new nonlinear counterpart called a single-side CCA (SsCCA) to enhance FD performance. The contributions of this work are four-fold: 1) an objective function for the nonlinear CCA is first reformulated, based on which a generalized solution is presented; 2) for the practical implementation, a particular solution of SsCCA is developed; 3) an SsCCA-based FD algorithm is designed for nonlinear systems, whose optimal FD ability is illustrated via theoretical analysis; and 4) based on the difference in FD results between two test statistics, fault diagnosis can be directly achieved. The studies on a nonlinear three-tank system are carried out to verify the effectiveness of the proposed SsCCA method.


Subject(s)
Canonical Correlation Analysis , Neural Networks, Computer , Algorithms
19.
IEEE Trans Neural Netw Learn Syst ; 33(10): 5694-5705, 2022 10.
Article in English | MEDLINE | ID: mdl-33852408

ABSTRACT

With the aid of neural networks, this article develops two data-driven designs of fault detection (FD) for dynamic systems. The first neural network is constructed for generating residual signals in the so-called finite impulse response (FIR) filter-based form, and the second one is designed for recursively generating residual signals. By theoretical analysis, we show that two proposed neural networks via self-organizing learning can find their optimal architectures, respectively, corresponding to FIR filter and recursive observer for FD purposes. Additional contributions of this study lie in that we establish bridges that link model- and neural-network-based methods for detecting faults in dynamic systems. An experiment on a three-tank system is adopted to illustrate the effectiveness of two proposed neural network-aided FD algorithms.


Subject(s)
Algorithms , Neural Networks, Computer , Computer Simulation
20.
ISA Trans ; 125: 415-425, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34187683

ABSTRACT

Incipient faults in running gear systems corrupt the overall performance of high-speed trains, increasing the necessity of fault detection and diagnosis whose purpose is to maintain the safe and stable operation of high-speed trains. For this purpose, a novel data-driven method, that utilizes Hellinger distance and slow feature analysis, is proposed in this study. By integrating Hellinger distance into slow feature analysis, a new test statistic is defined for detecting incipient faults in running gear systems. Furthermore, the hidden Markov method is developed for performing reliable fault diagnosis tasks. The salient strengths of the proposed method lie in its satisfactory fault detectability on the one hand and the considerable robustness against high-level noises on the other hand. Finally, the effectiveness of the proposed method is verified through a numerical example and a running gear system of high-speed trains under actual working conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...