Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Mol Med ; 30(1): 138, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232672

ABSTRACT

BACKGROUND: Premature rupture of the membranes (PROM) is a key cause of preterm birth and represents a major cause of neonatal mortality and morbidity. Natural products N-acetyl-d-galactosamine (GalNAc), which are basic building blocks of important polysaccharides in biological cells or tissues, such as chitin, glycoproteins, and glycolipids, may improve possible effects of wound healing. METHODS: An in vitro inflammation and oxidative stress model was constructed using tumor necrosis-α (TNF-α) and lipopolysaccharide (LPS) action on WISH cells. Human amniotic epithelial cells (hAECs) were primarily cultured by digestion to construct a wound model. The effects of GalNAc on anti-inflammatory and anti-oxidative stress, migration and proliferation, epithelial-mesenchymal transition (EMT), glycosaminoglycan (GAG)/hyaluronic acid (HA) production, and protein kinase B (Akt) pathway in hAECs and WISH cells were analyzed using the DCFH-DA fluorescent probe, ELISA, CCK-8, scratch, transwell migration, and western blot to determine the mechanism by which GalNAc promotes amniotic wound healing. RESULTS: GalNAc decreased IL-6 expression in TNF-α-stimulated WISH cells and ROS expression in LPS-stimulated WISH cells (P < 0.05). GalNAc promoted the expression of Gal-1 and Gal-3 with anti-inflammatory and anti-oxidative stress effects. GalNAc promoted the migration of hAECs (50% vs. 80%) and WISH cells through the Akt signaling pathway, EMT reached the point of promoting fetal membrane healing, and GalNAc did not affect the activity of hAECs and WISH cells (P > 0.05). GalNAc upregulated the expression of sGAG in WISH cells (P < 0.05) but did not affect HA levels (P > 0.05). CONCLUSIONS: GalNAc might be a potential target for the prevention and treatment of PROM through the galectin pathway, including (i) inflammation; (ii) epithelial-mesenchymal transition; (iii) proliferation and migration; and (iv) regression, remodeling, and healing.


Subject(s)
Acetylgalactosamine , Cell Movement , Epithelial-Mesenchymal Transition , Fetal Membranes, Premature Rupture , Galectins , Signal Transduction , Wound Healing , Humans , Fetal Membranes, Premature Rupture/metabolism , Acetylgalactosamine/metabolism , Acetylgalactosamine/analogs & derivatives , Galectins/metabolism , Pregnancy , Epithelial Cells/metabolism , Cell Line , Oxidative Stress , Female , Amnion/metabolism , Amnion/cytology , Cell Proliferation , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
2.
Cell Signal ; 123: 111379, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39233207

ABSTRACT

BACKGROUND AND AIMS: Acetaminophen (APAP) is the main cause of acute liver injury (ALI) in the Western. Our previous study has shown that fenofibrate activated hepatic expression of fibroblast growth factor 21 (FGF21) can protect the liver form APAP injuries by promoting autophagy. However, the underlying mechanism involved in FGF21-mediated autophagy remains unsolved. METHODS: The ALI mice model was established by intraperitoneal injection of APAP. To investigate the influence of FGF21 on autophagy and Sirt1 expression in APAP-induced ALI, FGF21 knockout (FGF21KO) mice and exogenously supplemented mouse recombinant FGF21 protein were used. In addition, primary isolated hepatocytes and the Sirt1 inhibitor EX527 were used to observe whether FGF21 activated autophagy in APAP injury is regulated by Sirt1 at the cellular level. RESULTS: FGF21, Sirt1, and autophagy levels increased in mice with acute liver injury (ALI) and in primary cultured hepatocytes. Deletion of the FGF21 gene exacerbated APAP-induced liver necrosis and oxidative stress, and decreased mitochondrial potential. It also reduced the mRNA and protein levels of autophagy-related proteins such as Sirt1, LC3-II, and p62, as well as the number of autophagosomes. Replenishment of FGF21 reversed these processes. In addition, EX527 partially counteracted the protective effect of FGF21 by worsening oxidative damage, mitochondrial damage, and reducing autophagy in primary liver cells treated with APAP. CONCLUSION: FGF21 increases autophagy by upregulating Sirt1 to alleviate APAP-induced injuries.


Subject(s)
Acetaminophen , Autophagy , Chemical and Drug Induced Liver Injury , Fibroblast Growth Factors , Hepatocytes , Mice, Inbred C57BL , Sirtuin 1 , Animals , Acetaminophen/adverse effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , Autophagy/drug effects , Fibroblast Growth Factors/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Mice , Hepatocytes/metabolism , Hepatocytes/drug effects , Male , Mice, Knockout , Oxidative Stress/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects
3.
Comput Methods Programs Biomed ; 255: 108364, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39146760

ABSTRACT

BACKGROUND AND OBJECTIVE: The isolated superior mesenteric artery dissection (ISMAD) is a rare but potentially fatal vascular disorder. Classifications for ISMAD were previously proposed based on morphometric features. However, the classification systems were not standardized and verified yet. This study conducted computational flow analysis to validate the latest classification system of ISMAD and aid clinical decision-making based on hemodynamic parameters. METHODS: 62 patients with ISMAD were included and classified into different types according to false lumen structures (five types, Type I-V) and true lumen patency (two types, Type P and Type S) according to Qiu classification system. Computational fluid dynamics and three-dimensional structural analyses were conducted on the basis of computed tomography angiography datasets. Quantitative and qualitative functional analyses were performed via parameters of interest including volume flow of each minute, pressure drop, pressure gradient, the derivative parameters of wall shear stress such as time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and the relative residence time (RRT). Statistical analyses were conducted among different ISMAD types. RESULTS: TAWSS, OSI and RRT showed significant difference among different types when classified using false lumen structures. In detail, Type IV showed significantly higher TAWSS than other types (p = 0.007). OSI was obviously higher in Type II (p = 0.015). Type IV also presented the lowest RRT (p = 0.005). The pressure drop, pressure gradient, OSI and RRT showed higher value in Type S than that in Type P, demonstrating a statistical significance with p values of 0.017, 0.041, 0.001 and 0.012, respectively. While Type P had larger volume flow than Type S (p = 0.041). CONCLUSIONS: The notable differences in hemodynamic features among different types demonstrated the feasibility of Qiu classification system. The evaluation based on hemodynamic simulation might also provide insights into risk identification and guide therapeutic decisions for ISMAD.


Subject(s)
Aortic Dissection , Hemodynamics , Mesenteric Artery, Superior , Humans , Middle Aged , Male , Female , Mesenteric Artery, Superior/diagnostic imaging , Mesenteric Artery, Superior/physiopathology , Aortic Dissection/diagnostic imaging , Aortic Dissection/classification , Aortic Dissection/physiopathology , Computed Tomography Angiography/methods , Adult , Aged , Hydrodynamics , Imaging, Three-Dimensional , Stress, Mechanical
4.
Commun Biol ; 7(1): 1011, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154074

ABSTRACT

The acquisition of ectopic fibroblast growth factor receptor 1 (FGFR1) expression is well documented in prostate cancer (PCa) progression, notably in conferring tumor growth advantage and facilitating metastasis. However, how FGFR1 contributes to PCa progression is not fully revealed. Here we report that ectopic FGFR1 in PCa cells promotes transferrin receptor 1 (TFR1) expression and expands the labile iron pool (LIP), and vice versa. We further demonstrate that FGFR1 stabilizes iron regulatory proteins 2 (IRP2) and therefore, upregulates TFR1 via promoting IRP2 binding to the IRE of TFR1. Deletion of FGFR1 in DU145 cells decreases the LIP, which potentiates the anticancer efficacy of iron chelator. Intriguingly, forced expression of IRP2 in FGFR1 depleted cells reinstates TFR1 expression and LIP, subsequently restoring the tumorigenicity of the cells. Together, our results here unravel a new mechanism by which FGFR1 drives PCa progression and suggest a potential novel target for PCa therapy.


Subject(s)
Homeostasis , Iron Regulatory Protein 2 , Iron , Prostatic Neoplasms , Receptor, Fibroblast Growth Factor, Type 1 , Humans , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Receptor, Fibroblast Growth Factor, Type 1/genetics , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Iron/metabolism , Iron Regulatory Protein 2/metabolism , Iron Regulatory Protein 2/genetics , Cell Line, Tumor , Animals , Proteolysis , Mice , Gene Expression Regulation, Neoplastic , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Antigens, CD
5.
Arch Microbiol ; 206(9): 375, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141138

ABSTRACT

Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/ß-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.


Subject(s)
Aureobasidium , Fermentation , Gene Expression Profiling , Glucans , Mutagenesis , Glucans/metabolism , Aureobasidium/genetics , Aureobasidium/metabolism , alpha-Amylases/genetics , alpha-Amylases/metabolism , Mutation , Rhizosphere , Soil Microbiology , Transcriptome , Fungal Proteins/genetics , Fungal Proteins/metabolism
6.
J Mater Chem C Mater ; 12(35): 13847-13853, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39144138

ABSTRACT

Colloidal perovskite nanoplatelets (NPLs) have shown promise in tackling blue light-emitting diode challenges based on their tunable band gap and high photoluminescence efficiencies. However, high quality and large area dense NPL films have been proven to be very hard to prepare because of their chemical and physical fragility during the liquid phase deposition. Herein, we report a perovskite-polymer composite film deposition strategy with fine morphology engineering obtained using the blade coating method. The effects of the polymer type, solution concentration, compounding ratio and film thickness on the film quality are systematically investigated. We found that a relatively high-concentration suspension with an optimized NPL to polymer ratio of 1 : 2 is crucial for the suppression of phase separation and arriving at a uniform film. Finally, sky-blue NPL-based perovskite light-emitting diodes were fabricated by blade coating showing an EQE of 0.12% on a device area of 16 mm2.

7.
Plant J ; 119(5): 2181-2198, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981001

ABSTRACT

Understanding and optimizing the process of grain filling helps the quest to maximize rice (Oryza sativa L.) seed yield and quality, yet the intricate mechanisms at play remain fragmented. Transcription factors (TFs) are major players in the gene networks underlying the grain filling process. Here, we employed grain incomplete filling (OsGIF1)/cell wall invertase 2, a key gene involved in grain filling, to explore its upstream TFs and identified a bZIP family TF, OsbZIP10, to be a transcriptional activator of OsGIF1. Rice grains of the knockouts of OsbZIP10 showed increased white-core rates but lower amylose content (AC), leading to better eating and cooking qualities in all genetic backgrounds investigated, though the impact of mutations in OsbZIP10 on grain weight depended on genetic background. Multi-omics analyses suggested that, in addition to OsGIF1, multiple genes involved in different biological processes contributing to grain filling were targeted by OsbZIP10, including OsAGPS1, a gene encoding the ADP-Glc pyrophosphorylase (AGPase) small subunit, and genes contributing to homeostasis of reactive oxygen species. Distinct genetic make-up was observed in OsbZIP10 between japonica and indica rice varieties, with the majority varieties of each subspecies belonging to two different haplotypes that were closely associated with AC. Overexpressing the haplotype linked to high-AC in the low-AC genetic background increased AC. Overall, this study sheds crucial light on the significance of the OsbZIP10-OsGIF1 module in the determination of rice grain quality, offering a potential avenue for genetic engineering of rice to produce seeds with tailored attributes.


Subject(s)
Edible Grain , Gene Expression Regulation, Plant , Oryza , Plant Proteins , Transcription Factors , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Seeds/genetics , Seeds/metabolism , Amylose/metabolism
8.
J Control Release ; 373: 410-425, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39038545

ABSTRACT

Dry powder inhalers (DPIs) are widely employed to treat respiratory diseases, offering numerous advantages such as high dose capacity and stable formulations. However, they usually face challenges in achieving sufficient pulmonary drug delivery and minimizing excessive oropharyngeal deposition. This review provides a new viewpoint to address these challenges by focusing on the role of swirling flow, a crucial yet under-researched aspect that induces strong turbulence. In the review, we comprehensively discuss both key classic designs (tangential inlet, swirling chamber, grid mesh, and mouthpiece) and innovative designs in inhalers, exploring how the induced swirling flow initiates powder dispersion and promotes delivery efficiency. Valuable design considerations to effectively coordinate inhalers with formulations and patients are also provided. It is highlighted that the delicate manipulation of swirling flow is essential to maximize benefits. By emphasizing the role of swirling flow and its potential application, this review offers promising insights for advancing DPI technology and optimizing therapeutic outcomes in inhaled therapy.


Subject(s)
Drug Delivery Systems , Dry Powder Inhalers , Equipment Design , Humans , Administration, Inhalation , Lung/metabolism , Animals
9.
Environ Sci Pollut Res Int ; 31(35): 48561-48575, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031314

ABSTRACT

In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.


Subject(s)
Charcoal , Cocos , Norfloxacin , Sulfadiazine , Water Pollutants, Chemical , Norfloxacin/chemistry , Adsorption , Sulfadiazine/chemistry , Charcoal/chemistry , Cocos/chemistry , Water Pollutants, Chemical/chemistry , Kinetics
10.
J Environ Manage ; 366: 121792, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002459

ABSTRACT

Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.


Subject(s)
Acyl-Butyrolactones , Cadmium , Cadmium/metabolism , Acyl-Butyrolactones/metabolism , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Bacteria/metabolism , Biodegradation, Environmental , Quorum Sensing , Phosphorus/metabolism , Nitrogen/metabolism
11.
Int J Biol Macromol ; 277(Pt 2): 134056, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39074702

ABSTRACT

When it comes to enzyme stability and their application in organic solvents, enzyme biocatalysis has emerged as a popular substitute for conventional chemical processes. However, the demand for enzymes exhibiting improved stability remains a persistent challenge. Organic solvents can significantly impacts enzyme properties, thereby limiting their practical application. This study focuses on Lipase Thermomyces lanuginose, through molecular dynamics simulations and experiments, we quantified the effect of different solvent-lipase interfaces on the interfacial activation of lipase. Revealed molecular views of the complex solvation processes through the minimum distance distribution function. Solvent-protein interactions were used to interpret the factors influencing changes in lipase conformation and enzyme activity. We found that water content is crucial for enzyme stability, and the optimum water content for lipase activity was 35 % in the presence of benzene-water interface, which is closely related to the increase of its interfacial activation angle from 78° to 102°. Methanol induces interfacial activation in addition to significant competitive inhibition and denaturation at low water content. Our findings shed light on the importance of understanding solvent effects on enzyme function and provide practical insights for enzyme engineering and optimization in various solvent-lipase interfaces.


Subject(s)
Enzyme Stability , Lipase , Molecular Dynamics Simulation , Solvents , Water , Water/chemistry , Solvents/chemistry , Lipase/chemistry , Lipase/metabolism , Protein Conformation , Eurotiales
12.
Environ Pollut ; 357: 124453, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38936038

ABSTRACT

The environmental transmission of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) exerted devastating threats to global public health, and their interactions with other emerging contaminants (ECs) have raised increasing concern. This study investigated that the abundances of ARGs and MRGs with the predominant type of efflux pump were simultaneously increased (8.4-59.1%) by disinfectant polyhexamethylene guanidine (PHMG) during waste activated sludge (WAS) anaerobic digestion. The aggregation of the same microorganisms (i.e., Hymenobacter and Comamonas) and different host bacteria (i.e., Azoarcus and Thauera) were occurred upon exposure to PHMG, thereby increasing the co-selection and propagation of MRGs and ARGs by vertical gene transfer. Moreover, PHMG enhanced the process of horizontal gene transfer (HGT), facilitating their co-transmission by the same mobile genetic elements (20.2-223.7%). Additionally, PHMG up-regulated the expression of critical genes (i.e., glnB, trpG and gspM) associated with the HGT of ARGs and MRGs (i.e., two-component regulatory system and quorum sensing) and exocytosis system (i.e., bacterial secretion system). Structural equation model analysis further verified that the key driver for the simultaneous enrichment of ARGs and MRGs under PHMG stress was microbial community structure. The study gives new insights into the aggravated environmental risks and mechanisms of ECs in sludge digestion system, providing guidance for subsequent regulation and control of ECs.


Subject(s)
Disinfectants , Guanidines , Sewage , Sewage/microbiology , Disinfectants/toxicity , Disinfectants/pharmacology , Guanidines/toxicity , Gene Transfer, Horizontal , Metals/toxicity , Anaerobiosis , Drug Resistance, Microbial/genetics , Bacteria/genetics , Bacteria/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Waste Disposal, Fluid , Drug Resistance, Bacterial/genetics
13.
Chemosphere ; 362: 142662, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936483

ABSTRACT

PER: and polyfluorinated alkyl substances, especially perfluorooctanoic acid and perfluorooctane sulfonic acid (PFOX), have attracted considerable attention lately because of their widespread occurrence in aquatic environment and potential biological toxicity to animals and human beings. The development of economical, efficient, and engineerable adsorbents for removing PFOX in water has become one of the research focuses. This review summarized the recent progress on natural mineral and industrial solid based adsorbent (NM&ISW-A) and removal mechanisms concerning PFOX onto NM&ISW-A, as well as proposed the current challenges and future perspectives of using NM&ISW-A for PFOX removal in water. Kaolinite and montmorillonite are usually used as model clay minerals for PFOX removal, and have been proved to adsorb PFOX by ligand exchange and electrostatic attraction. Fe-based minerals, such as goethite, magnetite, and hematite, have better PFOX adsorption capacity than clay minerals. The adsorbent prepared from industrial solid waste by high temperature roasting has great potential application prospects. Fabricating nanomaterials, amination modification, surfactant modification, fluorination modification, developing versatile composites, and designing special porous structure are beneficial to improve the adsorption performance of PFOX onto NM&ISW-A by enhancing the specific surface area, positive charge, and hydrophobicity. Electrostatic interaction, hydrophobic interaction, hydrogen bond, ligand and ion exchange, and self-aggregation (formation of micelle or hemimicelle) are the main adsorption mechanisms of PFOX by NM&ISW-A. Among them, electrostatic and hydrophobic interactions play a considerable role in the removal of PFOX by NM&ISW-A. Therefore, NM&ISW-A with electrostatic functionalities and considerable hydrophobic segments enables rapid, efficient, and high-capacity removal of PFOX. The future directions of NM&ISW-A for PFOX removal include the preparation and regeneration of engineerable NM&ISW-A, the development of coupling technology for PFOX removal based on NM&ISW-A, the in-depth research on adsorption mechanism of PFOX by NM&ISW-A, as well as the development of NM&ISW-A for PFOX alternatives removal. This review paper would be helpful the comprehensive understanding of NM&ISW-A potential for PFOX removal and the PFOX removal mechanisms, and identifies the gaps for future research and development.


Subject(s)
Alkanesulfonic Acids , Caprylates , Fluorocarbons , Minerals , Water Pollutants, Chemical , Water Purification , Fluorocarbons/chemistry , Fluorocarbons/isolation & purification , Adsorption , Alkanesulfonic Acids/chemistry , Caprylates/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Minerals/chemistry , Solid Waste , Industrial Waste
14.
Fitoterapia ; 177: 106090, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38906388

ABSTRACT

A chemical investigation of the aerial parts of Piper sarmentosum resulted in the isolation and identification of 14 amide alkaloids, including three new amide alkaloids, pipersarmenoids A - C (1-3), three new natural amide alkaloids, pipersarmenoids D - F (4-6), and 8 known analogues, N-p-coumaroyltyramine (7), piperlotine C (8), piperlotine D (9), pellitorine (10), sarmentine (11), aurantiamide acetate (12), 1-cinnamoyl pyrrolidine (13) and sarmentamide B (14). Their structures were determined by spectroscopic analysis including HRESIMS and 1D and 2D NMR. The cytotoxicity, neuroinflammation-inhibiting and acetylcholinesterase (AChE) inhibitory activities of those compounds were tested. Compounds 1, 2 and 12 inhibited NO production induced by LPS in BV2 cells with IC50 values of 9.36, 12.53 and 10.77 µM, respectively. Moreover, 1, 2, 7 and 11 showed moderate inhibitory activity on AChE with IC50 values ranging from 37.56 to 48.84 µM.


Subject(s)
Alkaloids , Cholinesterase Inhibitors , Phytochemicals , Piper , Plant Components, Aerial , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Piper/chemistry , Molecular Structure , Animals , Mice , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Plant Components, Aerial/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cell Line , Amides/pharmacology , Amides/isolation & purification , Amides/chemistry , Nitric Oxide/metabolism , China , Microglia/drug effects , Fatty Acids, Unsaturated , Polyunsaturated Alkamides
15.
Int J Mol Sci ; 25(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928210

ABSTRACT

Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.


Subject(s)
Brain , Formaldehyde , Sequence Analysis, RNA , Tissue Fixation , Formaldehyde/chemistry , Animals , Mice , Brain/metabolism , Tissue Fixation/methods , Sequence Analysis, RNA/methods , Alzheimer Disease/genetics , Polymers/chemistry , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , RNA/genetics
16.
J Environ Manage ; 364: 121321, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38870785

ABSTRACT

Effectively tackling extreme climate change requires sound knowledge about carbon emissions and their driving forces. Currently, agricultural carbon emission assessment often deals with its inventory, efficiency, determinants, and response independently, which will leave out the complex interactions among its various components, thus there is a lack of comprehensive, scalable, comparable explanations for agricultural carbon emissions. Herein, we introduce an integrated agricultural carbon emission assessment framework (IEDR): Inventory (I) × Efficiency (E) × Determinants (D) × Response (R), which was then applied to an illustration for the county-level agricultural carbon emissions in Hunan Province, China. Results show that: (1) Agricultural carbon emission inventory (ACEI) increased from 20.06 × 106 tC in 2006 to 21.99 × 106 tC in 2014 and decreased to 19.07 × 106 tC by 2020, depicting a fluctuating trend. Meanwhile, there was remarkable spatial heterogeneity, with higher ACEI in the North and South than in the East and West. (2) Agricultural carbon emission efficiency (ACEE) increased from 0.8520 in 2006 to 0.8992 in 2020, depicting a growing trend driven by technological progress. Spatially distributed in contrast to ACEI, regions with higher ACEE were located in the eastern and western areas. (3) ACEI was negatively correlated with ACEE (-0.657), indicating that increasing ACEE is a key strategy for reducing emissions. (4) The natural environment, rural development level, and policy support had critical impacts on ACEE and ACEI. In particular, the cultivated area and rural water affairs development were significant influences on ACEE and ACEI. Given the externalities of carbon emissions and its important public goods characteristics of the atmosphere, local carbon issues are also global concerns. Therefore, the case study of the IEDR model not only validates this theoretical paradigm and realizes regional responsibility for global carbon reduction but also supports and expands the theoretical and empirical corpus in the field of agricultural carbon emissions and efficiency, providing insights and references for other global regions facing similar challenges.


Subject(s)
Agriculture , Carbon , Climate Change , China , Carbon/analysis , Environmental Monitoring , Models, Theoretical
17.
Sci Total Environ ; 946: 174159, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909797

ABSTRACT

Adsorption method exhibits promising potential in effectively removal of phosphate from wastewater, yet it faces tremendous challenges in practical application. Limited comprehension of adsorption mechanisms and the lack of evaluation method for scaling up application are the two main obstacles. To fully realize the practical application of P adsorbents, we reviewed advanced tools, including density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate mechanisms, underscored the significance of thermodynamics and kinetics in engineering design, and proposed strategies for regenerating and reusing P adsorbents. Specifically, we delved into the utilization of DFT and XAFS to gain insights into adsorption mechanisms, focusing on active site verification and molecular interaction configurations. Additionally, we explored precise calculation methods for adsorption thermodynamics and adsorption kinetics, encompassing thermodynamic equilibrium constants, reactor selection, and the regeneration, recovery, and disposal of P adsorbents. Our comprehensive review aims to serve as a guiding light in advancing the development of highly efficient P adsorbents for engineering applications.

18.
Cell Mol Immunol ; 21(7): 738-751, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38806624

ABSTRACT

Psoriasis is a common chronic inflammatory skin disease driven by the aberrant activation of dendritic cells (DCs) and T cells, ultimately leading to increased production of cytokines such as interleukin (IL)-23 and IL-17A. It is established that the cGAS-STING pathway is essential for psoriatic inflammation, however, the specific role of cGAS-STING signaling in DCs within this context remains unclear. In this study, we demonstrated the upregulation of cGAS-STING signaling in psoriatic lesions by analyzing samples from both clinical patients and imiquimod (IMQ)-treated mice. Using a conditional Sting-knockout transgenic mouse model, we elucidated the impact of cGAS-STING signaling in DCs on the activation of IL-17- and IFN-γ-producing T cells in psoriatic inflammation. Ablation of the Sting hampers DC activation leads to decreased numbers of IL-17-producing T cells and Th1 cells, and thus subsequently attenuates psoriatic inflammation in the IMQ-induced mouse model. Furthermore, we explored the therapeutic potential of the STING inhibitor C-176, which reduces psoriatic inflammation and enhances the anti-IL-17A therapeutic response. Our results underscore the critical role of cGAS-STING signaling in DCs in driving psoriatic inflammation and highlight a promising psoriasis treatment.


Subject(s)
Dendritic Cells , Imiquimod , Inflammation , Interleukin-17 , Membrane Proteins , Psoriasis , Signal Transduction , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Psoriasis/immunology , Psoriasis/pathology , Membrane Proteins/metabolism , Membrane Proteins/genetics , Interleukin-17/metabolism , Humans , Mice , Inflammation/pathology , Inflammation/immunology , Imiquimod/pharmacology , Nucleotidyltransferases/metabolism , Mice, Knockout , Mice, Inbred C57BL , Disease Models, Animal , Female , Male
19.
Chem Commun (Camb) ; 60(47): 6063-6066, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38780308

ABSTRACT

In this study, a benzoselenadiazole- and pyridine-bifunctionalized hydrogen-bonded arylamide foldamer was synthesized. A co-crystallization experiment with 1,4-diiodotetrafluorobenzene showed that a new type of supramolecular double helices, which were induced by three orthogonal interactions, namely, three-center hydrogen bonding (O⋯H⋯O), I⋯N halogen bonding and Se⋯N chalcogen bonding, have been constructed in the solid state. This work presents a novel instance of multiple non-covalent interactions that work together to construct supramolecular architectures.

20.
Drug Des Devel Ther ; 18: 1573-1582, 2024.
Article in English | MEDLINE | ID: mdl-38765878

ABSTRACT

Objective: Atrial fibrillation (AF) is the most common abnormal heart rhythm in elderly patients. Rivaroxaban has been widely used for stroke prevention. The anticoagulant response to rivaroxaban increases with age, which may make elderly patients susceptible to adverse outcomes resulting from small differences in bioavailability between generic and brand products. Methods: We designed a cohort study of ≥65-year-old inpatients with AF. Sociodemographic and laboratory measures of qualified patients who received brand or generic rivaroxaban for at least 72 hours at the study hospital from January 2021 to June 2023 were collected retrospectively. The primary outcome was the incidence of bleeding. Results: A total of 1008 qualifying patients were included for analysis, with 626 (62.1%) receiving brand rivaroxaban and 382 (37.9%) receiving generic rivaroxaban. After propensity score matching and weighting to account for confounders, the odds ratios comparing brand vs generic rivaroxaban (95% confidence intervals) for the bleeding was 1.15 (0.72-1.82). Results from subgroup analyses of patients with age ≥85, HAS-BLED score ≥ 3, containment of antiplatelet drugs, and female patients were consistent with the primary analysis. Conclusion: It provides evidence regarding the clinical safety outcome of generic rivaroxaban in the elderly AF population that may be particularly susceptible to adverse outcomes resulting from small allowable differences in pharmacokinetics.


Subject(s)
Atrial Fibrillation , Drugs, Generic , Factor Xa Inhibitors , Hemorrhage , Rivaroxaban , Humans , Atrial Fibrillation/drug therapy , Rivaroxaban/adverse effects , Rivaroxaban/administration & dosage , Rivaroxaban/pharmacokinetics , Aged , Female , Hemorrhage/chemically induced , Male , Aged, 80 and over , Drugs, Generic/adverse effects , Drugs, Generic/therapeutic use , Drugs, Generic/pharmacokinetics , Drugs, Generic/administration & dosage , Retrospective Studies , Factor Xa Inhibitors/adverse effects , Factor Xa Inhibitors/pharmacokinetics , Factor Xa Inhibitors/administration & dosage , Inpatients , Cohort Studies , Stroke/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL