Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
Med ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39094582

ABSTRACT

BACKGROUND: A dramatic increase in fetal situs inversus diagnoses by ultrasound in the months following the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surge of December 2022 in China led us to investigate whether maternal SARS-CoV-2 exposure could be associated with elevated risk of fetal situs inversus. METHODS: In this multi-institutional, hospital-based, matched case-control study, we investigated pregnant women who underwent ultrasonographic fetal biometric assessment at gestational weeks 20-24 at our hospitals. Each pregnant woman carrying a situs inversus fetus was randomly matched with four controls based on the date of confinement. Relevant information, including SARS-CoV-2 infection, and other potential risk factors were collected. Conditional logistic regression was used to test possible associations between fetal situs inversus and SARS-CoV-2 infection at different gestational weeks as well as individual risk factors. FINDINGS: A total of 52 pregnant women diagnosed with fetal situs inversus between January 1 and October 31, 2023 and 208 matched controls with normal fetuses were enrolled. We found no association between an increased risk of fetal situs inversus with gestational SARS-CoV-2 infection or with other risk factors. However, fetal situs inversus was significantly associated with SARS-CoV-2 infection specifically in gestational weeks 4-6 (adjusted odds ratio [aOR] 6.54 [95% confidence interval 1.76-24.34]), but not with infection at other gestational ages, after adjusting for covariates. CONCLUSIONS: Increased risk of fetal situs inversus is significantly associated with maternal SARS-CoV-2 infection at gestational weeks 4-6, corresponding to the fetal developmental window for visceral lateralization in humans. FUNDING: National Key R&D Program of China, etc.

2.
Cell Rep Med ; : 101660, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39059385

ABSTRACT

Gestational diabetes mellitus (GDM) presents varied manifestations throughout pregnancy and poses a complex clinical challenge. High-depth cell-free DNA (cfDNA) sequencing analysis holds promise in advancing our understanding of GDM pathogenesis and prediction. In 299 women with GDM and 299 matched healthy pregnant women, distinct cfDNA fragment characteristics associated with GDM are identified throughout pregnancy. Integrating cfDNA profiles with lipidomic and single-cell transcriptomic data elucidates functional changes linked to altered lipid metabolism processes in GDM. Transcription start site (TSS) scores in 50 feature genes are used as the cfDNA signature to distinguish GDM cases from controls effectively. Notably, differential coverage of the islet acinar marker gene PRSS1 emerges as a valuable biomarker for GDM. A specialized neural network model is developed, predicting GDM occurrence and validated across two independent cohorts. This research underscores the high-depth cfDNA early prediction and characterization of GDM, offering insights into its molecular underpinnings and potential clinical applications.

3.
J Colloid Interface Sci ; 676: 506-520, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39047378

ABSTRACT

The synergistic anti-tumor impact of phototherapy and a cascading immune response are profoundly limited by hypoxia and a weakened immune response. Intravenous and intratumoral injection of therapeutic drugs also cause pain, rapid drug clearance and low utilization rates. Here, a novel cryo-millineedle platform for intratumoral delivery of a phototherapy system, S.epi@IR820, is developed in this work, combining the properties of Staphylococcus epidermidis (S. epidermidis) and IR820 for photo-immunotherapy of colorectal cancer. In this cryo-millineedle platform, S. epidermidis enhances the near-infrared absorption and light stability of IR820 and catalyzes the decomposition of H2O2 into O2 via an endogenous catalase to relieve tumor hypoxia, improve phototherapy and enhance immunogenic cell death (ICD). More interestingly, the native immunogenicity of S. epidermidis and ICD elicited by phototherapy achieved a potent anti-tumor immune response. To the best of our knowledge, this is the first study to utilize native S. epidermidis to relieve hypoxia and facilitate phototherapy. Both in vitro and in vivo experiments showed that the millineedle based phototherapy system can efficiently catalyse the decomposition of H2O2 into O2, facilitate phototherapeutic killing of CT26 tumor cells by S.epi@IR820 and enhance ICD, thus successfully activated the immune response and achieved the photo-immunotherapy against colorectal cancer. In conclusion, this study provides a novel strategy for enhanced anti-tumor efficiency of photo-immunotherapy, and develops an effective method for orthotopic administration of tumors.

4.
Tob Control ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981671

ABSTRACT

OBJECTIVE: To investigate the association of state-level cigarette price and tobacco control expenditure with the large 2000-2019 decline in cigarette smoking among US 18-24 year-olds. METHODS: Smoking behaviour was assessed in the 24 most populous US states using the 1992-2019 Tobacco Use Supplements to the Current Population Survey; association with price and expenditure was tested using adjusted logistic regression. States were ranked by inflation-adjusted average price and tobacco control expenditure and grouped into tertiles. State-specific time trends were estimated, with slope changes in 2001/2002 and 2010/2011. RESULTS: Between 2000 and 2010, the odds of smoking among US young adults decreased by a third (adjusted OR, AOR 0.68, 95% CI 0.56 to 0.84). By 2019, these odds were one-quarter of their 2000 level (AOR 0.24, 95% CI 0.19 to 0.31). Among states in the lowest tertile of price/expenditure tobacco control activity, initially higher young adult smoking decreased by 13 percentage points from 2010 to 2018-2019, to a prevalence of 5.6% (95% CI 4.5% to 6.8%), equal to that in the highest tobacco-control tertile of states (6.5%, 95% CI 5.2% to 7.8%). Neither state tobacco control spending (AOR 1.0, 95% CI 0.999 to 1.002) nor cigarette price (AOR 0.96, 95% CI: 0.92 to 1.01) were associated with young adult smoking in statistical models. In 2019, seven states had prevalence over 3 SDs higher than the 24-state mean. CONCLUSION: National programmes may have filled a gap in state-level interventions, helping drive down the social acceptability of cigarette smoking among young adults across all states. Additional interventions are needed to assist high-prevalence states to further reduce smoking.

5.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010173

ABSTRACT

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Subject(s)
ATP Binding Cassette Transporter 1 , Lipid Droplets , Mice, Inbred C57BL , MicroRNAs , Microglia , Spinal Cord Injuries , Up-Regulation , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Microglia/metabolism , Microglia/pathology , Animals , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Lipid Droplets/metabolism , Mice , Cell Line , Male , Lipid Metabolism/genetics
6.
Sci China Life Sci ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39037697

ABSTRACT

The TET family is well known for active DNA demethylation and plays important roles in regulating transcription, the epigenome and development. Nevertheless, previous studies using knockdown (KD) or knockout (KO) models to investigate the function of TET have faced challenges in distinguishing its enzymatic and nonenzymatic roles, as well as compensatory effects among TET family members, which has made the understanding of the enzymatic role of TET not accurate enough. To solve this problem, we successfully generated mice catalytically inactive for specific Tet members (Tetm/m). We observed that, compared with the reported KO mice, mutant mice exhibited distinct developmental defects, including growth retardation, sex imbalance, infertility, and perinatal lethality. Notably, Tetm/m mouse embryonic stem cells (mESCs) were successfully established but entered an impaired developmental program, demonstrating extended pluripotency and defects in ectodermal differentiation caused by abnormal DNA methylation. Intriguingly, Tet3, traditionally considered less critical for mESCs due to its lower expression level, had a significant impact on the global hydroxymethylation, gene expression, and differentiation potential of mESCs. Notably, there were common regulatory regions between Tet1 and Tet3 in pluripotency regulation. In summary, our study provides a more accurate reference for the functional mechanism of Tet hydroxymethylase activity in mouse development and ESC pluripotency regulation.

7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 561-565, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38952097

ABSTRACT

Macrophage migration inhibitor factor (MIF), as a pro-inflammatory and oncogenic cytokine, is highly expressed in a variety of malignant tumors and recruits tumor cells or immune cells into the tumor microenvironment. MIF affects the development of tumor by altering the tumor microenvironment. In the process of tumor, MIF not only plays an anti-inflammatory role, but also promotes tumorigenesis by immune escape and immune tolerance.This is closely related to immune cells that play a role in the tumor immune response, mainly including natural killer (NK) cells, macrophages, dendritic cells, B cells, T cells and myeloid-derived suppressor cells. The article summarizes the role of MIF in tumor immune and the relationship between MIF and the development of malignant tumors, in order to provide new ideas and possible therapy for tumor treatment.


Subject(s)
Macrophage Migration-Inhibitory Factors , Neoplasms , Tumor Microenvironment , Macrophage Migration-Inhibitory Factors/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Animals , Tumor Microenvironment/immunology , Killer Cells, Natural/immunology , Macrophages/immunology , Dendritic Cells/immunology , T-Lymphocytes/immunology
8.
Article in English | MEDLINE | ID: mdl-39027983

ABSTRACT

Panax notoginseng has the effect of stimulating circulation to end stasis. Our study was designed to evaluate the anti-thrombotic effect of protoparaxotriol saponins (PTS) from Panax notoginseng and the involved mechanisms. A thrombosis model was constructed, and the anti-thrombotic activity of PTS was determined by erythrocyte staining, heart rate, and blood flow velocity. In addition, quantitative real-time polymerase chain reaction (qPCR) was used to identify changes in the expression of genes related to coagulation, inflammation, and apoptosis. PTS alleviated arachidonic acid (AA)-induced caudal vein thrombosis, restored blood flow, and increased the area of cardiac erythrocyte staining, heart rate and blood flow velocity. It reduced the ponatinib-induced cerebral thrombus area and decreased the intensity of erythrocyte staining. The qPCR data showed that the anti-thrombotic effect of PTS was mediated by suppression of genes related to coagulation, inflammation and apoptosis, and also involved inhibition of NF-κB and PI3K/Akt pathways.

9.
Mol Ther ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956871

ABSTRACT

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.

10.
ArXiv ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38947922

ABSTRACT

Alzheimer's disease (AD) is the most prevalent form of dementia, affecting millions worldwide with a progressive decline in cognitive abilities. The AD continuum encompasses a prodormal stage known as Mild Cognitive Impairment (MCI), where patients may either progress to AD (MCIc) or remain stable (MCInc). Understanding the underlying mechanisms of AD requires complementary analysis derived from different data sources, leading to the development of multimodal deep learning models. In this study, we leveraged structural and functional Magnetic Resonance Imaging (sMRI/fMRI) to investigate the disease-induced grey matter and functional network connectivity changes. Moreover, considering AD's strong genetic component, we introduce Single Nucleotide Polymorphisms (SNPs) as a third channel. Given such diverse inputs, missing one or more modalities is a typical concern of multimodal methods. We hence propose a novel deep learning based classification framework where generative module employing Cycle Generative Adversarial Networks (cGAN) was adopted to impute missing data within the latent space. Additionally, we adopted an Explainable Artificial Intelligence (XAI) method, Integrated Gradients (IG), to extract input features relevance, enhancing our understanding of the learned representations. Two critical tasks were addressed: AD detection and MCI conversion prediction. Experimental results showed that our framework was able to reach the state-of-the-art in the classification of CN vs AD reaching an average test accuracy of 0.926 ± 0.02. For the MCInc vs MCIc task, we achieved an average prediction accuracy of 0.711 ± 0.01 using the pre-trained model for CN and AD. The interpretability analysis revealed that the classification performance was led by significant grey matter modulations in cortical and subcortical brain areas well known for their association with AD. Moreover, impairments in sensory-motor and visual resting state network connectivity along the disease continuum, as well as mutations in SNPs defining biological processes linked to amyloid-beta and cholesterol formation clearance and regulation, were identified as contributors to the achieved performance. Overall, our integrative deep learning approach shows promise for AD detection and MCI prediction, while shading light on important biological insights.

11.
J Hazard Mater ; 476: 135078, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38964043

ABSTRACT

Biostimulation (providing favorable environmental conditions for microbial growth) and bioaugmentation (introducing exogenous microorganisms) are effective approaches in the bioremediation of petroleum-contaminated soil. However, uncertainty remains in the effectiveness of these two approaches in practical application. In this study, we constructed mesocosms using petroleum hydrocarbon-contaminated soil. We compared the effects of adding nutrients, introducing exogenous bacterial degraders, and their combination on remediating petroleum contamination in the soil. Adding nutrients more effectively accelerated total petroleum hydrocarbon (TPH) degradation than other treatments in the initial 60 days' incubation. Despite both approaches stimulating bacterial richness, the community turnover caused by nutrient addition was gentler than bacterial degrader introduction. As TPH concentrations decreased, we observed a succession in microbial communities characterized by a decline in copiotrophic, fast-growing bacterial r-strategists with high rRNA operon (rrn) copy numbers. Ecological network analysis indicated that both nutrient addition and bacterial degrader introduction enhanced the complexity and stability of bacterial networks. Compared to the other treatment, the bacterial network with nutrient addition had more keystone species and a higher proportion of negative associations, factors that may enhance microbial community stability. Our study demonstrated that nutrient addition effectively regulates community succession and ecological interaction to accelerate the soil TPH degradation.

12.
Am J Pathol ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032599

ABSTRACT

Retinal detachment (RD) is a sight-threatening condition that occurs in several retinal diseases. Microglia that reside in retina are activated after RD and are involved in the death of photoreceptor cells. The involvement of microglial pyroptosis in the early pathological process of RD is still unclear. It has been shown that VX-765, an inhibitor of caspase-1, may exert neuroprotective effects by targeting microglial pyroptosis in nervous system disease; however, whether it plays a role in RD is uncertain. This study detected and localized pyroptosis to specific cells by immunofluorescence co-staining and flow cytometry in rat RD models. The majority of gasdermin D N-terminal (GSDMD-N)-positive cells exhibited IBA1-positive or P2RY12-positive microglia in the early stage of RD, indicating the pyroptosis of microglia. Administration of VX-765 shifted the microglia phenotype from M1 to M2, inhibited microglial migration toward the outer nuclear layer (ONL) post-RD, and most importantly, inhibited microglial pyroptosis. The thickness of ONL increased with VX-765 administration, and the photoreceptors were more structured and orderly under hematoxylin and eosin staining and transmission electron microscopy, revealing the protective effects of VX-765 on photoreceptors. Overall, this study demonstrates that inflammation induced by pyroptosis of microglia is the early pathological process of RD. VX-765 may serve as a candidate therapeutic approach for the treatment of RD by targeting microglia.

13.
Heliyon ; 10(11): e31487, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828323

ABSTRACT

Background: Cervical cancer is one of the most common malignancies in women worldwide. As a RING type ubiquitin ligase, SIAH2 has been reported to promote the progression of a variety of tumors by interacting with and targeting multiple chaperones and substrates. The aim of this study was to further identify the role and the related molecular mechanisms involved of SIAH2 in cervical carcinogenesis. Methods and results: Cellular assays in vitro showed that knockdown of SIAH2 inhibited the proliferation, migration and invasion of human cervical cancer cells C33A and SiHa, induced apoptosis, and increased the sensitivity to cisplatin treatment. Knockdown of SIAH2 also inhibited the epithelial-mesenchymal transition and activation of the Akt/mTOR signaling pathway in cervical cancer cells, which were detected by Western blot. Mechanistically, SIAH2, as a ubiquitin ligase, induced the ubiquitination degradation of GSK3ß degradation by using coIP. The results of complementation experiments further demonstrated that GSK3ß overexpression rescued the increase of cell proliferation and invasion caused by SIAH2 overexpression. Specific expression of SIAH2 appeared in precancerous and cervical cancer tissues compared to inflammatory cervical lesions tissues using immunohistochemical staining. The more SIAH2 was expressed as the degree of cancer progressed. SIAH2 was significantly highly expressed in cervical cancer tissues (44/55, 80 %) compared with precancerous tissues (18/69, 26.1 %). Moreover, the expression level of SIAH2 in cervical cancer tissues was significantly correlated with the degree of cancer differentiation, and cervical cancer tissues with higher SIAH2 expression levels were less differentiated. Conclusion: Targeting SIAH2 may be beneficial to the treatment of cervical cancer.

14.
Front Psychiatry ; 15: 1384298, 2024.
Article in English | MEDLINE | ID: mdl-38827440

ABSTRACT

Anxiety and depression in children and adolescents warrant special attention as a public health concern given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmental factors and genomics affect children and adolescents anxiety and depression across three cohorts: Adolescent Brain and Cognitive Development Study (US, age of 9-10; N=11,875), Consortium on Vulnerability to Externalizing Disorders and Addictions (INDIA, age of 6-17; N=4,326) and IMAGEN (EUROPE, age of 14; N=1888). We performed data harmonization and identified the environmental impact on anxiety/depression using a linear mixed-effect model, recursive feature elimination regression, and the LASSO regression model. Subsequently, genome-wide association analyses with consideration of significant environmental factors were performed for all three cohorts by mega-analysis and meta-analysis, followed by functional annotations. The results showed that multiple environmental factors contributed to the risk of anxiety and depression during development, where early life stress and school support index had the most significant and consistent impact across all three cohorts. In both meta, and mega-analysis, SNP rs79878474 in chr11p15 emerged as a particularly promising candidate associated with anxiety and depression, despite not reaching genomic significance. Gene set analysis on the common genes mapped from top promising SNPs of both meta and mega analyses found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine, and a trend of enrichment in the cerebellum. Our findings provide evidences of consistent environmental impact from early life stress and school support index on anxiety and depression during development and also highlight the genetic association between mutations in potassium channels, which support the stress-depression connection via hypothalamic-pituitary-adrenal axis, along with the potential modulating role of potassium channels.

15.
Neurosci Lett ; 836: 137871, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38857698

ABSTRACT

Parkinson's disease (PD) entails the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc), leading to movement-related impairments. Accurate assessment of DA neuron health is vital for research applications. Manual analysis, however, is laborious and subjective. To address this, we introduce TrueTH, a user-friendly and robust pipeline for unbiased quantification of DA neurons. Existing deep learning tools for tyrosine hydroxylase-positive (TH+) neuron counting often lack accessibility or require advanced programming skills. TrueTH bridges this gap by offering an open-sourced and user-friendly solution for PD research. We demonstrate TrueTH's performance across various PD rodent models, showcasing its accuracy and ease of use. TrueTH exhibits remarkable resilience to staining variations and extreme conditions, accurately identifying TH+ neurons even in lightly stained images and distinguishing brain section fragments from neurons. Furthermore, the evaluation of our pipeline's performance in segmenting fluorescence images shows strong correlation with ground truth and outperforms existing models in accuracy. In summary, TrueTH offers a user-friendly interface and is pretrained with a diverse range of images, providing a practical solution for DA neuron quantification in Parkinson's disease research.


Subject(s)
Deep Learning , Dopaminergic Neurons , Dopaminergic Neurons/metabolism , Animals , Tyrosine 3-Monooxygenase/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Male , Mice , Rats
16.
Neurosci Lett ; 836: 137887, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-38942112

ABSTRACT

Although microRNA (miRNA) have important clinical prospects in the early diagnosis and treatment of PD, the functions and mechanisms of miRNAs in PD models remain poorly defined. In this study, we screened 9 miRNAs that differently expressed in PD patients and found that miR-142-3p expression was downregulated in both animal and cell models of PD. We showed that overexpression of miR-142-3p significantly alleviates the neuronal damage induced by MPP+, while knockdown of miR-142-3p exacerbates the neuronal damage caused by MPP+. We further found that miR-142-3p targets and inhibits the expression of C9orf72. Knockdown of C9orf72 mitigated neuronal autophagy dysfunction by reducing excessive activation of the AKT/mTOR pathway after MPP+ stimulation, thereby exerted neuroprotective effects. This study reveals that miR-142-3p protects neuron in PD pathogenesis via negatively regulating C9orf72 and enhancing autophagy. Our findings provides an insight into the development of potential biomarkers and therapeutic targets for PD.


Subject(s)
Apoptosis , Autophagy , C9orf72 Protein , MicroRNAs , Neurons , Parkinson Disease , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Neurons/metabolism , Neurons/pathology , Humans , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Autophagy/physiology , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Male , Mice
17.
Bioorg Med Chem Lett ; 109: 129824, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823729

ABSTRACT

Cancer, as a public health issue, is the leading cause of death worldwide. Tetrahydroisoquinoline derivatives have effective biological activities and can be used as potential therapeutic agents for antitumor drugs. In this work, we designed and synthesized a series of novel tetrahydroisoquinoline compounds and evaluated their antitumor activity in vitro on several representative human cancer cell lines. The results showed that the vast majority of compounds showed good inhibitory activities against the cancer cell lines of HCT116, MDA-MB-231, HepG2, and A375.


Subject(s)
Antineoplastic Agents , Drug Design , Drug Screening Assays, Antitumor , Tetrahydroisoquinolines , Humans , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Structure-Activity Relationship , Cell Line, Tumor , Cell Proliferation/drug effects , Molecular Structure , Dose-Response Relationship, Drug
18.
Lipids Health Dis ; 23(1): 194, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909243

ABSTRACT

BACKGROUND: Lipid droplet (LD)-laden microglia is a key pathological hallmark of multiple sclerosis. The recent discovery of this novel microglial subtype, lipid-droplet-accumulating microglia (LDAM), is notable for increased inflammatory factor secretion and diminished phagocytic capability. Lipophagy, the autophagy-mediated selective degradation of LDs, plays a critical role in this context. This study investigated the involvement of microRNAs (miRNAs) in lipophagy during demyelinating diseases, assessed their capacity to modulate LDAM subtypes, and elucidated the potential underlying mechanisms involved. METHODS: C57BL/6 mice were used for in vivo experiments. Two weeks post demyelination induction at cervical level 4 (C4), histological assessments and confocal imaging were performed to examine LD accumulation in microglia within the lesion site. Autophagic changes were observed using transmission electron microscopy. miRNA and mRNA multi-omics analyses identified differentially expressed miRNAs and mRNAs under demyelinating conditions and the related autophagy target genes. The role of miR-223 in lipophagy under these conditions was specifically explored. In vitro studies, including miR-223 upregulation in BV2 cells via lentiviral infection, validated the bioinformatics findings. Immunofluorescence staining was used to measure LD accumulation, autophagy levels, target gene expression, and inflammatory mediator levels to elucidate the mechanisms of action of miR-223 in LDAM. RESULTS: Oil Red O staining and confocal imaging revealed substantial LD accumulation in the demyelinated spinal cord. Transmission electron microscopy revealed increased numbers of autophagic vacuoles at the injury site. Multi-omics analysis revealed miR-223 as a crucial regulatory gene in lipophagy during demyelination. It was identified that cathepsin B (CTSB) targets miR-223 in autophagy to integrate miRNA, mRNA, and autophagy gene databases. In vitro, miR-223 upregulation suppressed CTSB expression in BV2 cells, augmented autophagy, alleviated LD accumulation, and decreased the expression of the inflammatory mediator IL-1ß. CONCLUSION: These findings indicate that miR-223 plays a pivotal role in lipophagy under demyelinating conditions. By inhibiting CTSB, miR-223 promotes selective LD degradation, thereby reducing the lipid burden and inflammatory phenotype in LDAM. This study broadens the understanding of the molecular mechanisms of lipophagy and proposes lipophagy induction as a potential therapeutic approach to mitigate inflammatory responses in demyelinating diseases.


Subject(s)
Autophagy , Cathepsin B , Demyelinating Diseases , Lipid Droplets , Lysophosphatidylcholines , Mice, Inbred C57BL , MicroRNAs , Microglia , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Microglia/metabolism , Microglia/pathology , Mice , Lipid Droplets/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Cathepsin B/metabolism , Cathepsin B/genetics , Lysophosphatidylcholines/metabolism , Disease Models, Animal , Male , Gene Expression Regulation , Cell Line
19.
medRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798576

ABSTRACT

Objective: Understanding the neurobiology of cognitive dysfunction in psychotic disorders remains elusive, as does developing effective interventions. Limited knowledge about the biological heterogeneity of cognitive dysfunction hinders progress. This study aimed to identify subgroups of patients with psychosis with distinct patterns of functional brain alterations related to cognition (cognitive biotypes). Methods: B-SNIP consortium data (2,270 participants including participants with psychotic disorders, relatives, and controls) was analyzed. Researchers used reference-informed independent component analysis and the NeuroMark 100k multi-scale intrinsic connectivity networks (ICN) template to obtain subject-specific ICNs and whole-brain functional network connectivity (FNC). FNC features associated with cognitive performance were identified through multivariate joint analysis. K-means clustering identified subgroups of patients based on these features in a discovery set. Subgroups were further evaluated in a replication set and in relatives. Results: Two biotypes with different functional brain alteration patterns were identified. Biotype 1 exhibited brain-wide alterations, involving hypoconnectivity in cerebellar-subcortical and somatomotor-visual networks and worse cognitive performance. Biotype 2 exhibited hyperconnectivity in somatomotor-subcortical networks and hypoconnectivity in somatomotor-high cognitive processing networks, and better preserved cognitive performance. Demographic, clinical, cognitive, and FNC characteristics of biotypes were consistent in discovery and replication sets, and in relatives. 70.12% of relatives belonged to the same biotype as their affected family members. Conclusions: These findings suggest two distinctive psychosis-related cognitive biotypes with differing functional brain patterns shared with their relatives. Patient stratification based on these biotypes instead of traditional diagnosis may help to optimize future research and clinical trials addressing cognitive dysfunction in psychotic disorders.

20.
Anal Bioanal Chem ; 416(16): 3765-3774, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38775954

ABSTRACT

Multiplexed in situ RNA imaging offers new opportunities for gene expression profiling by providing high-throughput spatial information. In this work, we present a cyclic combinatorial fluorescent in situ hybridization (combFISH) assay to achieve multiplexed detection of RNA in cell cultures and tissues. Specifically, multiplexing is achieved through cyclic interrogation of barcode sequences on the rolling circle amplicons generated from the padlock probe assay by using sets of combinatorial detection probes. Theoretically, combFISH can detect 64 genes in three hybridization cycles by combinatorial barcoding using 12 fluorescently labeled detection probes. Our method eliminates sequencing-by-ligation (SBL) chemistry in the in situ sequencing protocol and directly uses RNA as targets for ligation, making it more straightforward. We showed that our method works in fresh-frozen and formalin-fixed paraffin-embedded tissue sections. With its straightforward protocols, we expect our method to be adopted by the scientific community and extended to clinical settings.


Subject(s)
In Situ Hybridization, Fluorescence , RNA , In Situ Hybridization, Fluorescence/methods , RNA/analysis , Humans , Animals , Fluorescent Dyes/chemistry , Gene Expression Profiling/methods
SELECTION OF CITATIONS
SEARCH DETAIL