Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Heliyon ; 10(12): e32782, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975204

ABSTRACT

Purpose: The intimate connection between long noncoding RNA (lncRNA) and autophagy has been established in cartilage degeneration. However, their roles in meniscal degeneration remain ambiguous. This study aimed to identify the key autophagy-related lncRNA and its associated regulatory network in meniscal degeneration in the context of osteoarthritis (OA). Methods: RNA sequencing was performed to identify differentially expressed lncRNAs (DELs) and mRNAs (DEMs), which were then conducted to enrichment analyses using the DAVID database and Metascape. Autophagy-related DEMs were identified by combining DEMs with data from the Human Autophagy Database. Three databases were used to predict miRNA, and the DIANA LncBase Predicted database was utilized to predict miRNA-lncRNA interactions. Based on these predictions, comprehensive competitive endogenous RNA (ceRNA) network were constructed. The expression levels of the classical autophagy markers and autophagy-related ceRNA network were validated. Additionally, Gene Set Enrichment Analysis (GSEA) was performed using autophagy-related DEMs. Results: 310 DELs and 320 DEMs were identified, with five upregulated and one downregulated autophagy-related DEMs. Through reverse prediction of miRNA, paired miRNA-lncRNA interactions, and verification using RT-qPCR, two lncRNAs (PCAT19, CLIP1-AS1), two miRNA (has-miR-3680-3p and has-miR-4795-3p) and two mRNAs (BAG3 and HSP90AB1) were included in the constructed ceRNA regulatory networks. GSEA indicated that the increased expression of autophagy-related mRNAs inhibited glycosaminoglycan biosynthesis in the degenerative meniscus. Conclusion: This study presented the first construction of regulatory ceRNA network involving autophagy-related lncRNA-miRNA-mRNA interactions in OA meniscus. These findings offered valuable insights into the mechanisms underlying meniscal degeneration and provided potential targets for therapeutic intervention.

2.
Toxicol Res (Camb) ; 13(4): tfae109, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39036523

ABSTRACT

Background: Acrylamide (AA) is a toxic substance formed when cooking starch-based foods at high temperatures. Studies have shown that AA can cause neurotoxicity, reproductive toxicity and so on. However, there remains limited understanding of the potential skeletal toxicity of AA. Objective: The aim of this study was to investigate the potential skeletal toxicity of AA, as well as the potential bone protective effects of Resveratrol (RVT). Methods: Based on the daily intake of adult women, adult female mice was treated with AA at 0, 0.01, 0.1, 1 mg/kg/d or AA/RVT (1 mg/kg/d AA +10 mg/kg/d RVT) for 8 weeks, and skeletal toxicity were evaluated by RT-qPCR and histopathological techniques. Results: The results found that exposure to AA (0.1 or 1 mg/kg/d) after 8 weeks, osteogenesis exhibited pathological damage characteristics such as inhibition of growth plate function, and reduction of fibrous tissue, and cartilage exhibited pathological damage characteristics such as irregular cell morphology and arrangement, and damage to the tidal line. The results of cellular functional gene testing showed a decrease in the expression of functional genes in osteoblasts and chondrocytes. Meanwhile, after further co-treatment with AA (1 mg/kg/d) and resveratrol (RVT) (10 mg/kg/d), we found that RVT restored AA-induced damage to osteogenesis and cartilage, and reduced the high apoptosis and oxidative stress levels in osteogenesis/cartilage after AA exposure. Conclusion: In summary, this study confirmed the skeletal toxicity of AA on female adult mice, and further clarified the antioxidant protective effect of RVT on this toxicity.

3.
Life Sci ; 350: 122759, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38815897

ABSTRACT

AIMS: Amoxicillin is a broad-spectrum beta-lactam antibiotic used to treat infectious diseases in pregnant women. Studies have shown that prenatal amoxicillin exposure (PAmE) has developmental toxicity on fetal development. However, the effect of PAmE on long bone development has not been reported. This study aimed to investigate the "toxic window" of PAmE on long bone development and explore its possible mechanism in fetal mice. MATERIALS AND METHODS: Pregnant mice were administered amoxicillin by gavage at different stages (gestational day (GD)10-12 and GD16-18), different doses (150 and 300 mg/kg·d) and different courses (single and multiple courses). Fetal femurs were collected at GD18 and bone development related indicators were detected. KEY FINDINGS: The results showed that PAmE significantly reduced the length of the femur and primary ossification center of fetal mice, and inhibited the development of fetal growth plate. Meanwhile, PAmE inhibited the development of bone marrow mesenchymal stem cells, osteoclasts and endothelial cells in fetal long bone. Further, we found the fetal long bone developmental toxicity induced by PAmE was most significant at late-pregnancy (GD16-18), high dose (300 mg/kg·d) and multiple-course group. Besides, PAmE inhibited the expression of Wnt/ß-catenin signaling pathway in fetal long bone. The ß-catenin mRNA expression was significantly positively correlated with the development indexes of fetal long bone. SIGNIFICANCE: PAmE has toxic effects on long bone development, and there was an obvious "toxic window" of PAmE on the long bone development in fetal mice. The Wnt/ß-catenin signaling pathway may mediate PAmE-induced fetal long bone development inhibition.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Bone Development , Wnt Signaling Pathway , Animals , Female , Pregnancy , Mice , Amoxicillin/toxicity , Bone Development/drug effects , Wnt Signaling Pathway/drug effects , Anti-Bacterial Agents/toxicity , Fetal Development/drug effects , Femur/drug effects , Femur/embryology , Osteogenesis/drug effects , beta Catenin/metabolism , Prenatal Exposure Delayed Effects/chemically induced , Male , Fetus/drug effects
4.
Toxicol Lett ; 397: 141-150, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759937

ABSTRACT

Autophagy has been implicated in the developmental toxicity of multiple organs in offspring caused by adverse environmental conditions during pregnancy. We have previously found that prenatal caffeine exposure (PCE) can cause fetal overexposure to maternal glucocorticoids, leading to chondrodysplasia. However, whether autophagy is involved and what role it plays has not been reported. In this study, a PCE rat model was established by gavage of caffeine (120 mg/kg.d) on gestational day 9-20. The results showed that reduced cartilage matrix synthesis in male fetal rats in the PCE group was accompanied by increased autophagy compared to the control group. Furthermore, the expression of mTOR, miR-421-3p, and glucocorticoid receptor (GR) in male fetal rat cartilage of PCE group was increased. At the cellular level, we confirmed that corticosterone inhibited matrix synthesis in fetal chondrocytes while increasing autophagic flux. However, administration of autophagy enhancer (rapamycin) or inhibitor (bafilomycin A1 or 3-methyladenine) partially increased or further decreased aggrecan expression respectively. At the same time, we found that corticosterone could increase the expression of miR-421-3p through GR and target to inhibit the expression of mTOR, thereby enhancing autophagy. In conclusion, PCE can cause chondrodysplasia and autophagy enhancement in male fetal rats. Intrauterine high corticosterone activates GR/miR-421-3p signaling and down-regulates mTOR signaling in fetal chondrocytes, resulting in enhanced autophagy, which can partially compensate for corticosterone-induced fetal chondrodysplasia. This study confirmed the compensatory protective effect of autophagy on the developmental toxicity of fetal cartilage induced by PCE and its epigenetic mechanism, providing novel insights for exploring the early intervention and therapeutic target of fetal-originated osteoarthritis.


Subject(s)
Autophagy , Caffeine , MicroRNAs , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Male , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/genetics , Pregnancy , Autophagy/drug effects , MicroRNAs/metabolism , MicroRNAs/genetics , Female , Caffeine/toxicity , Rats , Signal Transduction/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Prenatal Exposure Delayed Effects/chemically induced
6.
Arch Toxicol ; 98(6): 1891-1908, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522057

ABSTRACT

Dexamethasone is widely used in pregnant women at risk of preterm birth to reduce the occurrence of neonatal respiratory distress syndrome and subsequently reduce neonatal mortality. Studies have suggested that dexamethasone has developmental toxicity, but there is a notable absence of systematic investigations about its characteristics. In this study, we examined the effects of prenatal dexamethasone exposure (PDE) on mother/fetal mice at different doses (0.2, 0.4, or 0.8 mg/kg b.i.d), stages (gestational day 14-15 or 16-17) and courses (single- or double-course) based on the clinical practice. Results showed that PDE increased intrauterine growth retardation rate, and disordered the serum glucose, lipid and cholesterol metabolic phenotypes, and sex hormone level of mother/fetal mice. PDE was further discovered to interfere with the development of fetal lung, hippocampus and bone, inhibits steroid synthesis in adrenal and testis, and promotes steroid synthesis in the ovary and lipid synthesis in the liver, with significant effects observed at high dose, early stage and double course. The order of severity might be: ovary > lung > hippocampus/bone > others. Correlation analysis revealed that the decreased serum corticosterone and insulin-like growth factor 1 (IGF1) levels were closely related to PDE-induced low birth weight and abnormal multi-organ development in offspring. In conclusion, this study systematically confirmed PDE-induced multi-organ developmental toxicity, elucidated its characteristics, and proposed the potential "glucocorticoid (GC)-IGF1" axis programming mechanism. This research provided an experimental foundation for a comprehensive understanding of the effect and characteristics of dexamethasone on fetal multi-organ development, thereby guiding the application of "precision medicine" during pregnancy.


Subject(s)
Dexamethasone , Dose-Response Relationship, Drug , Fetal Development , Animals , Female , Pregnancy , Dexamethasone/toxicity , Dexamethasone/administration & dosage , Male , Fetal Development/drug effects , Mice , Fetal Growth Retardation/chemically induced , Insulin-Like Growth Factor I/metabolism , Glucocorticoids/toxicity , Glucocorticoids/administration & dosage , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/chemically induced
7.
Adv Sci (Weinh) ; 11(20): e2307442, 2024 May.
Article in English | MEDLINE | ID: mdl-38520084

ABSTRACT

Chondrodysplasia is closely associated with low birth weight and increased susceptibility to osteoarthritis in adulthood. Prenatal prednisone exposure (PPE) can cause low birth weight; however, its effect on offspring cartilage development remains unexplored. Herein, rats are administered clinical doses of prednisone intragastrically on gestational days (GDs) 0-20 and underwent long-distance running during postnatal weeks (PWs) 24-28. Knee cartilage is assayed for quality and related index changes on GD20, PW12, and PW28. In vitro experiments are performed to elucidate the mechanism. PPE decreased cartilage proliferation and matrix synthesis, causing offspring chondrodysplasia. Following long-distance running, the PPE group exhibited more typical osteoarthritis-like changes. Molecular analysis revealed that PPE caused cartilage circRNomics imbalance in which circGtdc1 decreased most significantly and persisted postnatally. Mechanistically, prednisolone reduced circGtdc1 expression and binding with Srsf1 to promote degradation of Srsf1 via K48-linked polyubiquitination. This further inhibited the formation of EDA/B+Fn1 and activation of PI3K/AKT and TGFß pathways, reducing chondrocyte proliferation and matrix synthesis. Finally, intra-articular injection of offspring with AAV-circGtdc1 ameliorated PPE-induced chondrodysplasia, but this effect is reversed by Srsf1 knockout. Altogether, this study confirms that PPE causes chondrodysplasia and susceptibility to osteoarthritis by altering the circGtdc1-Srsf1-Fn1 axis; in vivo, overexpression of circGtdc1 can represent an effective intervention target for ameliorating PPE-induced chondrodysplasia.


Subject(s)
Disease Models, Animal , Osteoarthritis , Prednisone , Prenatal Exposure Delayed Effects , RNA, Circular , Signal Transduction , Animals , Female , Rats , Pregnancy , RNA, Circular/genetics , RNA, Circular/metabolism , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Prednisone/pharmacology , Osteoarthritis/genetics , Osteoarthritis/metabolism , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Rats, Sprague-Dawley
8.
J Transl Med ; 22(1): 138, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321551

ABSTRACT

BACKGROUND: Chronic liver diseases constitute a major global public health burden, posing a substantial threat to patients' daily lives and even survival due to the potential development of musculoskeletal disorders. Although the relationship between chronic liver diseases and musculoskeletal disorders has received extensive attention, their causal relationship has not been comprehensively and systematically investigated. METHODS: This study aimed to assess the causal relationships between viral hepatitis, primary biliary cholangitis, primary sclerosing cholangitis (PSC), liver cirrhosis, and hepatocellular carcinoma (HCC) with osteoporosis, osteoarthritis, and sarcopenia through bidirectional Mendelian randomization (MR) research. The traits related to osteoporosis and osteoarthritis included both overall and site-specific phenotypes, and the traits linked to sarcopenia involved indicators of muscle mass and function. Random-effect inverse-variance weighted (IVW), weighted median, MR-Egger, and Causal Analysis Using the Summary Effect Estimates were used to evaluate causal effects, with IVW being the main analysis method. To enhance robustness, sensitivity analyses were performed using Cochran's Q test, MR-Egger intercept, MR-PRESSO global test, funnel plots, leave-one-out analyses, and latent causal variable model. RESULTS: The forward MR analysis indicated that PSC can reduce forearm bone mineral density (beta = - 0.0454, 95% CI - 0.0798 to - 0.0110; P = 0.0098) and increase the risk of overall osteoarthritis (OR = 1.012, 95% CI 1.002-1.022; P = 0.0247), while HCC can decrease grip strength (beta = - 0.0053, 95% CI - 0.008 to - 0.0025; P = 0.0002). The reverse MR analysis did not find significant causal effects of musculoskeletal disorders on chronic liver diseases. Additionally, no heterogeneity or pleiotropy was detected. CONCLUSIONS: These findings corroborate the causal effects of PSC on osteoporosis and osteoarthritis, as well as the causal impact of HCC on sarcopenia. Thus, the implementation of comprehensive preventive measures is imperative for PSC and HCC patients to mitigate the risk of musculoskeletal disorders, ultimately improving their quality of life.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Musculoskeletal Diseases , Osteoarthritis , Osteoporosis , Sarcopenia , Humans , Quality of Life , Genome-Wide Association Study
9.
J Infect Dis ; 229(6): 1658-1668, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38147364

ABSTRACT

Owing to the presence of microbial biofilm on the implant, the eradication of biofilm-associated infections poses a challenge for antibiotic therapies. The study aimed to investigate the efficacy and safety of the novel antibiotic agent TNP-2092 in the context of implant infections. In vivo, rats with periprosthetic joint infection (PJI) treated with antibiotics showed an increase in body weight and decrease in swelling, temperature, and width of knee, compared with the control group. Meanwhile, inflammatory markers in synovium and serum were decreased in the TNP-2092 group, consistent with the pathological results. Moreover, TNP-2092 was effective in eliminating bacteria and disruption biofilm formation, and further alleviated the abnormal bone absorption and reactive bone changes around the prosthesis. In conclusion, intra-articular injection of TNP-2092 is safe and effective in treating knee PJI in a rat model. The study provides a foundation for the future utilization of TNP-2092 in the management of implant-related infections.


Subject(s)
Anti-Bacterial Agents , Biofilms , Methicillin-Resistant Staphylococcus aureus , Prosthesis-Related Infections , Staphylococcal Infections , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Prosthesis-Related Infections/drug therapy , Prosthesis-Related Infections/microbiology , Staphylococcal Infections/drug therapy , Rats , Biofilms/drug effects , Male , Injections, Intra-Articular , Rats, Sprague-Dawley , Disease Models, Animal
10.
Biol Res ; 56(1): 61, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978540

ABSTRACT

Prenatal ethanol exposure (PEE) (mainly through maternal alcohol consumption) has become widespread. However, studies suggest that it can cause intrauterine growth retardation (IUGR) and multi-organ developmental toxicity in offspring, and susceptibility to various chronic diseases (such as neuropsychiatric diseases, metabolic syndrome, and related diseases) in adults. Through ethanol's direct effects and its indirect effects mediated by maternal-derived glucocorticoids, PEE alters epigenetic modifications and organ developmental programming during fetal development, which damages the offspring health and increases susceptibility to various chronic diseases after birth. Ethanol directly leads to the developmental toxicity of multiple tissues and organs in many ways. Regarding maternal-derived glucocorticoid-mediated IUGR, developmental programming, and susceptibility to multiple conditions after birth, ethanol induces programmed changes in the neuroendocrine axes of offspring, such as the hypothalamus-pituitary-adrenal (HPA) and glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axes. In addition, the differences in ethanol metabolic enzymes, placental glucocorticoid barrier function, and the sensitivity to glucocorticoids in various tissues and organs mediate the severity and sex differences in the developmental toxicity of ethanol exposure during pregnancy. Offspring exposed to ethanol during pregnancy have a "thrifty phenotype" in the fetal period, and show "catch-up growth" in the case of abundant nutrition after birth; when encountering adverse environments, these offspring are more likely to develop diseases. Here, we review the developmental toxicity, functional alterations in multiple organs, and neuroendocrine metabolic programming mechanisms induced by PEE based on our research and that of other investigators. This should provide new perspectives for the effective prevention and treatment of ethanol developmental toxicity and the early prevention of related fetal-originated diseases.


Subject(s)
Glucocorticoids , Prenatal Exposure Delayed Effects , Rats , Animals , Adult , Female , Pregnancy , Humans , Male , Glucocorticoids/metabolism , Glucocorticoids/pharmacology , Rats, Wistar , Placenta/metabolism , Fetal Development , Ethanol/toxicity , Chronic Disease
11.
BMC Musculoskelet Disord ; 24(1): 847, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891545

ABSTRACT

BACKGROUND: There has been ongoing debate about the use of tourniquets in total knee arthroplasty, and their application is widely studied. A comprehensive understanding of the advantages and disadvantages of tourniquet use during the procedure is crucial for optimizing surgical outcomes. This study aimed to investigate the effectiveness of tourniquet application, with a particular focus on blood loss and perioperative complications, providing valuable insights for clinical practice. METHODS: Fifty patients who underwent total knee arthroplasty were randomized into tourniquet (n = 25) and nontourniquet (n = 25) groups. The same surgeon performed all surgical procedures. The follow-up time was 14 days after surgery. Primary outcomes were hemoglobin level changes, blood loss, operation time, and perioperative plasma D-dimer levels. Secondary outcomes were postoperative complications, including thrombotic and nonthrombotic events. RESULTS: No significant differences were found in drainage, calculated blood loss, total blood loss, postoperative hemoglobin levels, or blood transfusion between the two groups (P > 0.05). No differences in D-dimer levels were observed on postoperative Days 1, 3, and 14 between the two groups, except on postoperative Day 7, when the D-dimer level in the tourniquet group was lower than that in the nontourniquet group (P = 0.03). The incidence of local complications (thigh bruising, blisters, pain, fat liquefaction, and superficial infections) in the tourniquet group was significantly higher than that in the nontourniquet group (P = 0.03), but no significant differences were found in thromboembolic and nonthromboembolic events or overall complications (P > 0.05). CONCLUSION: We conclude that tourniquet use does not reduce the length of surgery or blood loss but does increase local complications in total knee arthroplasty.


Subject(s)
Arthroplasty, Replacement, Knee , Humans , Arthroplasty, Replacement, Knee/adverse effects , Arthroplasty, Replacement, Knee/methods , Tourniquets/adverse effects , Blood Loss, Surgical/prevention & control , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Complications/prevention & control , Hemoglobins
12.
Toxicol Lett ; 387: 50-62, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37741353

ABSTRACT

Acetaminophen is a common analgesic and fever reduction medicine for pregnant women. Epidemiological studies suggest that prenatal acetaminophen exposure (PAcE) affects offspring health and development. However, the effects of PAcE on fetal long bone development and its potential mechanisms have not been elucidated. Based on clinical dosing characteristics, fetal mouse femurs were obtained for detection after oral gavage of acetaminophen at different doses (0, 100 or 400 mg/kg d), courses (single or multiple times) or stages (mid- or late pregnancy) during pregnancy in Kunming mice. The results showed that compared with the control group, PAcE reduced the length of total femur and the primary ossification center (POC), delayed the mineralization of POC and the ossification of epiphyseal region, and down-regulated the mRNA expression of osteogenic function markers (such as Runx2, Bsp, Ocn , Col1a1) in fetal femur, particularly in the high dose, multiple courses, and mid-pregnancy group. Meanwhile, the osteoclast and angiogenic function were also inhibited by PAcE at high dose, multiple courses, and mid-pregnancy, but the inhibition level was less than osteogenic function. Moreover, the alteration of canonical Wnt signalling pathway in PAcE fetal bone were consistent with its osteogenesis function changes. In conclusion, PAcE caused development toxicity and multi-cellular function inhibition in fetal long bone, particularly in the high dose, multiple treatments and mid-pregnancy group, and the alteration of canonical Wnt signalling pathway may be its potential mechanism.


Subject(s)
Acetaminophen , Prenatal Exposure Delayed Effects , Humans , Mice , Pregnancy , Female , Animals , Acetaminophen/toxicity , Fetal Development , Osteogenesis , Bone and Bones
13.
Food Chem Toxicol ; 180: 114003, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633638

ABSTRACT

Previous studies showed that chondrodysplasia has intrauterine origin. Although prenatal acetaminophen exposure (PAcE) can cause nervous and reproductive abnormalities in offspring, its effect on cartilage is uninvestigated. Herein, mice were treated with different doses and courses of acetaminophen at various gestational stages (100 or 400 mg/kg∙d on gestational days 10-12 (GD10-12), 400 mg/kg∙d on GD12 or GD15-17) based on clinical administration and conversion between humans and mice. Fetal knee joints were harvested on GD18 to analyze cartilage morphology, chondrocyte proliferation and apoptosis, and matrix content, synthesis and degradation. Results showed that 400 mg/kg∙d acetaminophen exposure during GD10-12 decreased chondrocyte numbers, safranin O staining, proliferation and matrix synthesis, without elevating matrix degradation and apoptosis. Low-dose, single-course, or late-pregnancy exposure had no effect on above indexes. Moreover, Tgfß pathway was inhibited, showing a positive correlation with the expression of Col2a1, Acan, Ki67, and Pcna. Overall, clinical doses of PAcE can inhibit chondrocyte proliferation and matrix synthesis, causing fetal mice chondrodysplasia, especially after multi-course exposure of 400 mg/kg∙d acetaminophen during GD10-12, the mechanism of which might involve Tgfß pathway inhibition. This study provides an experimental basis for assessing fetal developmental toxicity and standardizing the clinical use of acetaminophen during pregnancy.

14.
Biochem Pharmacol ; 215: 115722, 2023 09.
Article in English | MEDLINE | ID: mdl-37524209

ABSTRACT

Osteoporotic osteoarthritis is primarily associated with low subchondral bone mass. However, the mechanisms and therapeutic targets of osteoporotic osteoarthritis caused by prenatal dexamethasone exposure (PDE) in offspring remain unclear. In this study, pregnant Wistar rats were injected with dexamethasone to obtain bone tissue from fetal and postnatal rat offspring for analysis. Bone marrow mesenchymal stem cells (BMSCs) were isolated in vitro to elucidate the underlying molecular mechanisms. We determined in vivo that PDE reduced subchondral bone mass in adult female rat offspring, which originated from dysplasia of the subchondral bone. PDE led to a continuous increase in miR-6215 expression, accompanied by a decrease in FERM domain-containing protein 6 (FRMD6) expression. In vitro, dexamethasone upregulated miR-6215 expression through the glucocorticoid receptor, thereby inhibiting FRMD6 expression, promoting the translocation of yes-associated protein 1 (YAP1) into the nucleus of BMSCs, and downregulating downstream osteogenic marker genes. Finally, the rAAV-miR-6215 inhibitor rescued the low subchondral bone mass and osteoarthritis susceptibility caused by PDE in rat offspring. In conclusion, increased expression of miR-6215 mediates low subchondral bone mass caused by PDE through FRMD6/YAP1 signaling. Therefore, miR-6215 is a promising therapeutic target for PDE-induced low subchondral bone mass in offspring.


Subject(s)
MicroRNAs , Osteoarthritis , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Rats , Animals , Female , Rats, Wistar , Dexamethasone , Maternal Exposure , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/genetics , MicroRNAs/genetics
15.
Front Mol Biosci ; 10: 1134253, 2023.
Article in English | MEDLINE | ID: mdl-37168259

ABSTRACT

Background: The functional integrity of the meniscus continually decreases with age, leading to meniscal degeneration and gradually developing into osteoarthritis (OA). In this study, we identified diagnostic markers and potential mechanisms of action in aging-related meniscal degeneration through bioinformatics and experimental verification. Methods: Based on the GSE98918 dataset, common differentially expressed genes (co-DEGs) were screened using differential expression analysis and the WGCNA algorithm, and enrichment analyses based on Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were further performed. Next, the co-DEGs were imported into the STRING database and Cytoscape to construct a protein‒protein interaction (PPI) network and further validated by three algorithms in cytoHubba, receiver operating characteristic (ROC) curve analysis and the external GSE45233 dataset. Moreover, the diagnostic marker lactotransferrin (LTF) was verified in rat models of senescence and replicative cellular senescence via RT‒qPCR, WB, immunohistochemistry and immunofluorescence, and then the potential molecular mechanism was explored by loss of function and overexpression of LTF. Results: According to the analysis of the GSE98918 dataset, we identified 52 co-DEGs (42 upregulated genes and 10 downregulated genes) in the OA meniscus. LTF, screened out by Cytoscape, ROC curve analysis in the GSE98918 dataset and another external GSE45233 dataset, might have good predictive power in meniscal degeneration. Our experimental results showed that LTF expression was statistically increased in the meniscal tissue of aged rats (24 months) and senescent passage 5th (P5) meniscal cells. In P5 meniscal cells, LTF knockdown inhibited the NF-κB signaling pathway and alleviated senescence. LTF overexpression in passage 0 (P0) meniscal cells increased the expression of senescence-associated secretory phenotype (SASP) and induced senescence by activating the NF-κB signaling pathway. However, the senescence phenomenon caused by LTF overexpression could be reversed by the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC). Conclusion: For the first time, we found that increased expression of LTF was observed in the aging meniscus and could induce meniscal senescence and degeneration by activating the NF-κB signaling pathway. These results revealed that LTF could be a potential diagnostic marker and therapeutic target for age-related meniscal degeneration.

16.
Crit Rev Eukaryot Gene Expr ; 33(5): 61-71, 2023.
Article in English | MEDLINE | ID: mdl-37199314

ABSTRACT

Infantile hemangioma (IH) is the most common vascular tumor among infants and children. However, the understanding of pathogenesis about IH has not been fully elucidated, and the potential diagnostic maker remains further explored. In this study, we aimed to find miRNAs as potential biomarkers of IH through bioinformatic analysis. The microarray datasets GSE69136, GSE100682 were downloaded from the GEO database. The co-expressed differential miRNAs were identified by analyzing these two datasets. The downstream common target genes were predicted by the ENCORI, Mirgene, miRWalk, and Targetscan databases. GO annotation and KEGG pathway enrichment analysis for target genes were performed. The STRING database and Cytoscape software were used to construct the protein-protein interaction network and screen hub genes. Then potential diagnostic markers for IH were further screened and identified by using Receiver operating characteristic curve analysis. A total of thirteen co-expressed up-regulated miRNAs were screened out in the above two datasets, and 778 down-regulated target genes were then predicted. GO annotation and KEGG pathway enrichment analysis indicated that the common target genes strongly correlated with IH. Through the DEM-hub gene network construction, six miRNAs associated with the hub genes were identified. Finally, has-miR-522-3p, has-miR-512-3p, has-miR-520a-5p with high diagnostic values were screened out by receiver operating characteristic analysis. In the study, the potential miRNA-mRNA regulatory network was firstly constructed in IH. And, the three miRNAs might be used as potential biomarkers for IH, which also provided novel strategies for the therapeutic intervention of IH.


Subject(s)
Hemangioma , MicroRNAs , Child , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Profiling , Gene Regulatory Networks , Biomarkers , Computational Biology
17.
FASEB J ; 37(7): e23011, 2023 07.
Article in English | MEDLINE | ID: mdl-37249374

ABSTRACT

Autophagy inhibition is known to be involved in the development of adult osteoarthritis. Dexamethasone, as a synthetic glucocorticoid, is widely used for premature delivery and related pregnancy diseases in clinics. We have previously shown that prenatal dexamethasone exposure (PDE) was associated with increased susceptibility to postnatal osteoarthritis in offspring. However, whether the occurrence of fetal-originated adult osteoarthritis induced by PDE is related to autophagy remains unclear. In this study, we first found that PDE could increase the mRNA and protein expression of cartilage matrix-degrading enzymes (MMP3, MMP13, and ADAMTS5) and decrease the cartilage matrix contents in adult offspring, and the in vitro results suggested that this might be related to the autophagy inhibition of chondrocytes. Further, we demonstrated a persistent autophagy inhibition with autolysosome accumulation, low expression of cathepsin D (CTSD), increased H3K9ac level, and expression of miR-1912-3p in the cartilage of PDE offspring from fetus to adulthood. In vitro experiments showed that dexamethasone inhibited autophagy flux and CTSD expression in fetal chondrocytes, while overexpression of CTSD could alleviate the inhibition of autophagic flux induced by dexamethasone. Finally, we confirmed that dexamethasone increased the H3K9ac level and expression of miR-1912-3p through activation of the glucocorticoid receptor (GR), resulting in the decreased expression of CTSD and inhibition of autophagy flux in fetal chondrocytes. In conclusion, intrauterine miR-1912-3p/CTSD programming-mediated autophagy inhibition promoted the susceptibility to osteoarthritis in PDE adult offspring rats. This study provides new ideas for exploring early prevention and therapeutic targets in fetal-originated osteoarthritis.


Subject(s)
MicroRNAs , Osteoarthritis , Prenatal Exposure Delayed Effects , Pregnancy , Humans , Female , Rats , Male , Animals , Rats, Wistar , Cathepsin D , Prenatal Exposure Delayed Effects/chemically induced , Osteoarthritis/chemically induced , Osteoarthritis/genetics , Osteoarthritis/metabolism , Dexamethasone/toxicity , MicroRNAs/genetics , Autophagy
19.
Cell Commun Signal ; 21(1): 84, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095518

ABSTRACT

BACKGROUND: Osteoporosis is a degenerative disease characterized by reduced bone mass, with low peak bone mass being the predominant manifestation during development and having an intrauterine origin. Pregnant women at risk of preterm delivery are commonly treated with dexamethasone to promote fetal lung development. However, pregnant dexamethasone exposure (PDE) can lead to reduced peak bone mass and susceptibility to osteoporosis in offspring. In this study, we aimed to investigate the mechanism of PDE-induced low peak bone mass in female offspring from the perspective of altered osteoclast developmental programming. METHODS: 0.2 mg/kg.d dexamethasone was injected subcutaneously into rats on gestation days (GDs) 9-20. Some pregnant rats were killed at GD20 to remove fetal rat long bones, the rest were delivered naturally, and some adult offspring rats were given ice water swimming stimulation for two weeks. RESULTS: The results showed that the fetal rat osteoclast development was inhibited in the PDE group compared with the control group. In contrast, the adult rat osteoclast function was hyperactivation with reduced peak bone mass. We further found that the promoter region methylation levels of lysyl oxidase (LOX) were decreased, the expression was increased, and the production of reactive oxygen species (ROS) was raised in PDE offspring rat long bone before and after birth. Combined in vivo and in vitro experiments, we confirmed that intrauterine dexamethasone promoted the expression and binding of the glucocorticoid receptor (GR) and estrogen receptor ß (ERß) in osteoclasts and mediated the decrease of LOX methylation level and increase of expression through upregulation of 10-11 translocator protein 3 (Tet3). CONCLUSIONS: Taken together, we confirm that dexamethasone causes osteoclast LOX hypomethylation and high expression through the GR/ERß/Tet3 pathway, leading to elevated ROS production and that this intrauterine epigenetic programming effect can be carried over to postnatal mediating hyperactivation in osteoclast and reduced peak bone mass in adult offspring. This study provides an experimental basis for elucidating the mechanism of osteoclast-mediated intrauterine programming of low peak bone mass in female offspring of PDE and for exploring its early targets for prevention and treatment. Video Abstract.


Subject(s)
Dexamethasone , Osteoporosis , Humans , Rats , Pregnancy , Animals , Female , Rats, Wistar , Osteoclasts , Protein-Lysine 6-Oxidase , Estrogen Receptor beta , Reactive Oxygen Species
20.
Acta Pharm Sin B ; 13(2): 460-477, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36873163

ABSTRACT

Medication during pregnancy is widespread, but there are few reports on its fetal safety. Recent studies suggest that medication during pregnancy can affect fetal morphological and functional development through multiple pathways, multiple organs, and multiple targets. Its mechanisms involve direct ways such as oxidative stress, epigenetic modification, and metabolic activation, and it may also be indirectly caused by placental dysfunction. Further studies have found that medication during pregnancy may also indirectly lead to multi-organ developmental programming, functional homeostasis changes, and susceptibility to related diseases in offspring by inducing fetal intrauterine exposure to too high or too low levels of maternal-derived glucocorticoids. The organ developmental toxicity and programming alterations caused by medication during pregnancy may also have gender differences and multi-generational genetic effects mediated by abnormal epigenetic modification. Combined with the latest research results of our laboratory, this paper reviews the latest research progress on the developmental toxicity and functional programming alterations of multiple organs in offspring induced by medication during pregnancy, which can provide a theoretical and experimental basis for rational medication during pregnancy and effective prevention and treatment of drug-related multiple fetal-originated diseases.

SELECTION OF CITATIONS
SEARCH DETAIL