Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Foods ; 13(6)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38540810

Zongzi, made from glutinous rice, is usually thought to stay in the stomach for a long time, causing many people to shy away. In our research, Zongzi was prepared from three indica glutinous rice samples, and three japonica glutinous rice samples were digested in vitro in a human gastric simulator (HGS). It was found that digestion performance in HGS (gastric emptying) was mainly related to the hardness and stickiness of texture properties, and surprisingly, the hardness and stickiness of Zongzi were positively correlated, which contradicts past perception. Through the extraction and analysis of the coated layer on the surface of glutinous rice grains in Zongzi, the main source of its stickiness was the entanglement between the long chains of leached amylopectin molecules. The hardness was also mainly due to the high proportion of long chains in its glutinous rice starch, which made it difficult to gelatinize. Studies suggested that stickiness gradually disappeared during digestion, while hardness had a longer impact on digestive performance. The indica glutinous rice Zongzi with a higher long-chain level showed a higher resistant-starch (RS) level and slow hydrolysis in the intestinal digestion stage. Therefore, the texture and digestibility of Zongzi can be adjusted by changing the molecular structure of glutinous rice starch.

2.
Adv Sci (Weinh) ; 11(9): e2306056, 2024 Mar.
Article En | MEDLINE | ID: mdl-38126663

One-third of the food produced worldwide is wasted annually and never consumed, of which ≈ 40-50% are perishable vegetables and fruits (VFs). Although various methods are proposed to reduce this loss, high manufacturing costs and food safety concerns pose significant challenges for the preservation of VFs. Herein, a respiration-triggered, self-saving strategy for the preservation of perishable products based on a biomolecular Schiff base composite fabricated by imidization of chitosan and cinnamaldehyde (CS-Cin) is reported. Ripening of VFs produces acid moisture and triggers a Schiff base reaction in CS-Cin, permitting the release of volatile Cin into the storage space. This enables versatile preservation by placing CS-Cin on the side without the need to touch the food, like the desiccant packet in a food packaging bag, while the rotting of VFs is retarded in a self-saving manner. As a result, the lifetimes of broccoli and strawberries are extended from 2 to 8 days. Furthermore, CS-Cin with restored preservative properties can be repeatedly recycled from used CS via imidization with Cin. Compared with conventional techniques, the preservatives are easy to use, versatile, and cost-effective, and the respiration-responsive release of Cin empowers a self-saving approach toward the smart preservation of perishable food.


Acrolein/analogs & derivatives , Food Packaging , Schiff Bases , Food Packaging/methods
3.
J Sci Food Agric ; 103(14): 6837-6848, 2023 Nov.
Article En | MEDLINE | ID: mdl-37278491

BACKGROUND: Fat significantly affects the properties of ice cream. Prior studies have investigated the correlation between fat crystallization, fat destabilization, and ice cream quality. However, the role of fatty acid composition, the similarity between fat and emulsifier in these characteristics, and their impact on final product quality remains unclear. RESULTS: To investigate the influence of the fatty acid composition of fats, as well as their similarity to glycerol monostearate (GMS), on fat crystallization and destabilization during the aging and freezing stages, ice creams were formulated using a combination of two types of fats (coconut oil and palm olein) in five different ratios. In oil phases, decreased saturation of fatty acids (from 93.38% to 46.69%) and increased similarity to GMS (from 11.96% to 46.01%) caused a reduction in the maximum solid fat content. Moreover, the rise in unsaturated long-chain fatty acids (from 34.61% to 99.57%) and similarity to GMS enhanced the formation of rare and coarse fat crystals, leading to a sparse crystalline network. This, in turn, reduced the crystallization rate and the stiffness of the fat in emulsions. Assuming consistent overrun across all ice creams, the enhanced interactions between fat globules in ice cream improved its hardness, melting properties, and shrinkage. CONCLUSION: The crystalline properties of fat in emulsions were influenced by oil phases, impacting fat destabilization and ultimately enhancing the quality of ice cream. The present study offers valuable insights for the optimization of fat and monoglyceride fatty acid ester selection, with the potential to improve ice cream quality. © 2023 Society of Chemical Industry.


Fatty Acids , Ice Cream , Crystallization , Ice Cream/analysis , Glycerol , Fats/chemistry , Emulsions/chemistry
4.
Foods ; 12(4)2023 Feb 05.
Article En | MEDLINE | ID: mdl-36832763

In this study, the possible solubility properties and water-holding capacity mechanism of edible bird nest (EBN) were investigated through a structural analysis of soluble and insoluble fractions. The protein solubility and the water-holding swelling multiple increased from 2.55% to 31.52% and 3.83 to 14.00, respectively, with the heat temperature increase from 40 °C to 100 °C. It was observed that the solubility of high-Mw protein increased through heat treatment; meanwhile, part of the low-Mw fragments was estimated to aggregate to high-Mw protein with the hydrophobic interactions and disulfide bonds. The increased crystallinity of the insoluble fraction from 39.50% to 47.81% also contributed to the higher solubility and stronger water-holding capacity. Furthermore, the hydrophobic interactions, hydrogen bonds, and disulfide bonds in EBN were analyzed and the results showed that hydrogen bonds with burial polar group made a favorable contribution to the protein solubility. Therefore, the crystallization area degradation under high temperature with hydrogen bonds and disulfide bonds may be the main reasons underlying the solubility properties and water-holding capacity of EBN.

5.
Food Chem ; 414: 135685, 2023 Jul 15.
Article En | MEDLINE | ID: mdl-36809726

Sodium alginate (SA) was used to coat liposomes containing DPP-IV inhibitory collagen peptides to improve their stability and in vitro absorption for intra-oral delivery. The liposome structure as well as entrapment efficiency and DPP-IV inhibitory activity was characterized. The liposome stability was determined by measuring in vitro release rates and their gastrointestinal stability. Transcellular permeability of liposomes was further tested to characterize their permeability in small intestinal epithelial cells. The results showed that the 0.3% SA coating increased the diameter (166.7 nm to 249.9 nm), absolute value of zeta potential (30.2 mV to 40.1 mV) and entrapment efficiency (61.52% to 70.99%) of liposomes. The SA-coated liposomes containing collagen peptides showed enhanced storage stability within one month, gastrointestinal stability increased by 50% in bioavailability, transcellular permeability increased by 18% in transmission percentage, and in vitro release rates reduced by 34%, compared to uncoated liposomes. SA coating liposomes are promising carriers for transporting hydrophilic molecules, may be beneficial for improving nutrient absorption and can protect bioactive compounds from being inactivated in the gastrointestinal tract.


Alginates , Liposomes , Liposomes/chemistry , Biological Availability , Collagen , Peptides , Particle Size
6.
Foods ; 12(2)2023 Jan 06.
Article En | MEDLINE | ID: mdl-36673371

Due to the large consumption and discharge of water in wet milling, dry-milling is an alternative to produce waxy rice flour. The physical properties and sensory characteristics for preparing waxy rice balls in dry-milled waxy rice flour were compared in this study. The results showed that the damaged starch content increased significantly with the particle size of dry-milled flour, which decreased from 160 to 30 µm. The reduction in particle size increased the pasting viscosity of waxy rice flour, which further improved the stretch ability of dough and increased the viscoelasticity of the rice ball. The increase in damaged starch content directly led to a significant increase in the solubility of dry-milled flour, thereby increasing the freeze cracking rate of the rice ball and reducing its transparency, resulting in a decline in quality. In comparison with wet-milled waxy rice balls, dry-milled waxy rice balls made from rice flour in the range of 40 µm to 60 µm particle size had a similar texture and taste to that of wet-milled ones, moderate freeze cracking rate and better storage stability, as well as a stronger aroma of waxy rice that the consumer favored. GC-MS analysis showed that the content of key aroma compounds, such as grassy and fruity, noted nonanal in dry-milled flour, was 15-30% higher than that in the wet-milled depending on the difference of waxy rice variety. In conclusion, dry-milled waxy rice flour with a particle size in the range of 40 µm to 60 µm could be a candidate to replace wet-milled flour in the preparation of a waxy rice ball.

7.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36168909

The application of probiotics is limited by the loss of survival due to food processing, storage, and gastrointestinal tract. Encapsulation is a key technology for overcoming these challenges. The review focuses on the latest progress in probiotic encapsulation since 2020, especially precision engineering on microbial surfaces and microbial-mediated role. Currently, the encapsulation materials include polysaccharides and proteins, followed by lipids, which is a traditional mainstream trend, while novel plant extracts and polyphenols are on the rise. Other natural materials and processing by-products are also involved. The encapsulation types are divided into rough multicellular encapsulation, precise single-cell encapsulation, and microbial-mediated encapsulation. Recent emerging techniques include cryomilling, 3D printing, spray-drying with a three-fluid coaxial nozzle, and microfluidic. Encapsulated probiotics applied in food is an upward trend in which "classic probiotic foods" (yogurt, cheese, butter, chocolate, etc.) are dominated, supplemented by "novel probiotic foods" (tea, peanut butter, and various dry-based foods). Future efforts mainly include the effect of novel encapsulation materials on probiotics in the gut, encapsulation strategy oriented by microbial enthusiasm and precise encapsulation, development of novel techniques that consider both cost and efficiency, and co-encapsulation of multiple strains. In conclusion, encapsulation provides a strong impetus for the food application of probiotics.

8.
Foods ; 11(11)2022 Jun 05.
Article En | MEDLINE | ID: mdl-35681407

Chitosan offers real potential for use in food preservation, biomedicine, and environmental applications due to its excellent functional properties, such as ease in the fabrication of large films, biocompatibility, and antibacterial properties. However, the production and application of chitosan films were limited by their strong residual acetic acid taste, weak mechanical properties, and poor water vapor barrier properties. In this study, the effects of the chitosan concentration in the film-forming solutions and the neutralization treatment on the physicochemical properties of chitosan films were examined. The results demonstrated that the chitosan concentration affected the mechanical and barrier properties of chitosan films without the neutralization treatment. This was mainly due to the low acetic acid contents in chitosan films after drying. Acetic acid acted as a plasticizer within chitosan films resulting in a looser network structure. After neutralization, the chitosan films showed improvements in properties, with little effect on the chitosan concentration in the film-forming solutions. Moreover, chitosan films after neutralization showed no residual acetic acid. Therefore, neutralization could effectively improve the performance of chitosan films.

9.
Food Chem ; 389: 132999, 2022 Sep 30.
Article En | MEDLINE | ID: mdl-35552127

Heat shock and hygroscopicity are two main factors that resulted in low viability of probiotics in spray-dried microcapsules during storage. Hydrophobic polyester shellac was combined with whey protein isolate (WPI) to solve this problem. The results suggested that although the survival rate after drying decreased from 20.63% to 0.01% with increased shellac to WPI ratio, the 1:1 shellac-WPI provided the best protection among all samples during storage. The consistence between moisture-adsorption-isotherm and bacterial inactivation constants confirmed the moisture barrier effect of shellac under moderate humidity. Single-droplet drying and differential scanning calorimeter revealed that shellac addition reduced the drying rate and glass transition temperature of microcapsules, which in turn decreased the membrane integrity and growth capability of the probiotics after drying. This study revealed the dual effect of hydrophobic material on instant and long-term survival of spray-dried probiotic microcapsules, which provided new sight to the design of composite wall materials.


Lacticaseibacillus rhamnosus , Probiotics , Capsules , Microbial Viability , Probiotics/chemistry , Resins, Plant
10.
Foods ; 11(8)2022 Apr 14.
Article En | MEDLINE | ID: mdl-35454720

In this study, the physicochemical properties of indica (IWR) and japonica (JWR) waxy rice were investigated to find the critical factor that differentiates the pasting behaviors among the two cultivars. The results showed that the peak viscosity of 5 IWR flours was in the range of 1242 to 1371 cP, which was significantly higher than 4 JWR flours (667 to 904 cP). Correlation analysis indicated that all pasting parameters were not correlated (p < 0.05) with physicochemical properties of rice flours and the fine structure of isolated starches. The pasting profiles of IWRs were still significantly higher than those of JWRs after removing lipid, while there were no significant differences between the two cultivars after removing protein sequentially. Meanwhile, the addition of extracted protein from JWR to the isolated starch significantly decreased the viscosity compared to the addition of protein extracted from IWR. The protein composition results found that the IWR protein contained about 18% globulin and 64% glutelin, while the JWR protein contained 11% globulin and 73% glutelin. The addition of glutelin to isolated starch significantly decreased viscosity compared to the addition of globulin. Therefore, the differences in the content of globulin and glutelin might be the main reasons that differentiate the pasting behaviors of the two cultivars.

11.
Food Chem ; 388: 132909, 2022 Sep 15.
Article En | MEDLINE | ID: mdl-35447580

Octenylsuccinic (OS) groups distribution was considered random under traditional batch mode (BM) process due to excessive available octenyl succinic anhydride (OSA) at early stage, making the functionality optimization of OSA starch under restricted substitution degree (DS) difficult. To reveal the priority rule of substituent position at starch molecular level, a continuous mode (CM, dropwise OSA addition) was applied for OSA starch preparation. Initial OSA substitution was predominately at the branching points of amylopectin backbone, then successive at the branching points of shorter and longer chains with increasing DS. As DS increased over 1.49%, substitution started occurring along the chains and moved towards the non-reducing ends until DS reached 6.65%. At similar DS, more branching point substitutions occurred at CM starch, showing superior emulsifying property over BM starch. OSA substitution priority rule does exist under controlled OSA supply, which would facilitate OSA starch design with specific substitution pattern and favored functionality.


Starch , Succinic Anhydrides , Amylopectin
12.
J Colloid Interface Sci ; 608(Pt 1): 749-757, 2022 Feb 15.
Article En | MEDLINE | ID: mdl-34634547

Cuprous oxide (Cu2O) and cupric oxide (CuO) are widely available and low cost raw materials. Their applications as precursors for wet chemical synthesis of metallic Cu materials are greatly limited due to their insoluble in water and most organic solvents. In this work, copper superfine particles (Cu SPs) are synthesized using Cu2O and CuO as precursors via a heating process in monoethanoamine (MEA). Due to the strong coordinating character, Cu2O and CuO can be partially dissolved in MEA. The dissolved copper source is reduced by MEA at elevated temperature with the drastically releasing of NH3. As the dissolved copper source is reduced, more oxide will be dissolved and finally leads to the full reduction of Cu2O and CuO to produce the Cu SPs. The advantage of this synthesis method is that MEA acts as both the solvent and the reducing agent. The antimicrobial properties are investigated to find that the obtained Cu SPs depress the growth of Escherichia coli (E. coli) and Staphylococcus aureus (St. aureus) efficiently. More interesting, the composites produced via curing Cu2O and CuO with a small amount of MEA also exhibit excellent antimicrobial activity, indicating the MEA curing method is high-efficiency. The synthesis is low cost, high-efficiency, high atom-economy and up-scale synthesizing easily, which will benefit the wide applications of Cu SPs.


Anti-Infective Agents , Copper , Anti-Infective Agents/pharmacology , Copper/pharmacology , Escherichia coli , Ethanolamine , Oxides
13.
J Sci Food Agric ; 102(9): 3693-3702, 2022 Jul.
Article En | MEDLINE | ID: mdl-34894157

BACKGROUND: As plant-based foods have become more mainstream in recent years, carrageenan has been used to replace animal-derived gelatin in confectionery products. However, texture defects and water seepage during storage limit the development of kappa carrageenan (KC) gummy candies. RESULTS: This study evaluated the effects of hydrocolloids on the texture properties and storage stability of KC gummy candies. The results showed that 4 g kg-1 carboxymethylcellulose (CMC) composited with 20 g kg-1 KC formed a flexible gummy candy with low fragility and limited water seepage during storage. Further investigation revealed that 4 g kg-1 CMC promoted side-by-side intermolecular aggregation of KC helices through hydrogen bonding, which stabilized a denser network structure compared to the pure KC hydrogel. However, high CMC proportions (8-12 g kg-1 ) led to electrostatic repulsion that dominated in the system, inhibiting the gel-forming process and thus resulting in a weak gel structure with accelerated syneresis. CONCLUSION: This study found that 4 g kg-1 CMC was able to improve the flexibility and decrease unacceptable fragility of KC gummy candies, with water seepage decreased during storage significantly. It provided preliminary evidence for utilizing hydrocolloids to adjust texture and control water migration in KC gels, and has potential to promote wide development of vegan gummy candies. © 2021 Society of Chemical Industry.


Candy , Vegans , Animals , Carrageenan/chemistry , Colloids/chemistry , Gels/chemistry , Humans , Water
14.
Gels ; 8(1)2021 Dec 28.
Article En | MEDLINE | ID: mdl-35049559

Edible bird's nest (EBN) is an unusual mucin glycoprotein. In China, it is popular among consumers due to its skin whitening activity. However, the relationship between protein, sialic acid, and the whitening activity of EBN after digestion is still unclear. In the present work, the whitening activity (antioxidant activity and tyrosinase inhibitory activity) of digested EBN were studied by HepG2 and B16 cell models. The dissolution rate of protein and sialic acid was 49.59% and 46.45% after the simulated digestion, respectively. The contents of free sialic acid and glycan sialic acid in EBN digesta were 17.82% and 12.24%, respectively. HepG2 cell experiment showed that the digested EBN had significant antioxidant activity, with EC50 of 1.84 mg/mL, and had a protective effect on H2O2-induced oxidative damage cells. The results of H2O2-induced oxidative damage showed that the cell survival rate increased from 40% to 57.37% when the concentration of digested EBN was 1 mg/mL. The results of the B16 cell experiment showed that the digested EBN had a significant inhibitory effect on tyrosinase activity, and the EC50 value of tyrosinase activity was 7.22 mg/mL. Cell experiments showed that free sialic acid had stronger antioxidant activity and tyrosinase inhibitory activity than glycan sialic acid. The contribution rate analysis showed that protein component was the main antioxidant component in digestive products, and the contribution rate was 85.87%; free sialic acid was the main component that inhibited tyrosinase activity, accounting for 63.43%. The products of the complete digestion of EBN are suitable for the development of a new generation of whitening health products.

15.
J Agric Food Chem ; 68(34): 9195-9204, 2020 Aug 26.
Article En | MEDLINE | ID: mdl-32786860

Gas chromatography-mass spectrometry (GC-MS) coupled with the acceptance test, partial least-squares regression (PLSR) analysis, validation experiment, and preference test was used to identify the key aroma compounds in dog foods (DFs). Six DFs were evaluated by spraying six palatability enhancers onto a basal DF. The differently flavored palatability enhancers were prepared by the Maillard reaction using different protein sources and reaction conditions. The intake ratios of the six DFs were tested by six adult beagle dogs and were classified into high, medium, and low levels. A total of 55 volatile compounds were identified using headspace solid-phase microextraction (HS-SPME) GC-MS. Correlation analysis of the volatile compounds associated with intake ratios using partial least-squares regression (PLSR) found nine significantly positive and three significantly negative compounds that made a significant contribution to the palatability of DFs. Validation tests undertaken by adding three significantly positive compounds, one significantly negative compound, and one nonsignificant compound into the odorless matrix successfully verified the accuracy prediction of the PLSR model. The nine significantly positive compounds were heptanal, nonanal, octanal, (E)-2-hexenal, (E,E)-2,4-decadienal, 2-pentylfuran, 4-methyl-5-thiazoleethanol, 2-furfurylthiol, and (E)-2-decenal. The contributions of nine key aroma compounds were further analyzed by the preference test. (E)-2-decenal, 2-furfurylthiol, and 4-methyl-5-thiazoleethanol showed higher first choice, consumption ratio, and unit contribution rate and were vital to the overall preferred aroma of DFs.


Animal Feed/analysis , Odorants/analysis , Volatile Organic Compounds/chemistry , Animals , Dogs , Female , Food Preferences , Gas Chromatography-Mass Spectrometry , Male , Solid Phase Microextraction , Taste , Volatile Organic Compounds/isolation & purification
16.
Food Funct ; 11(5): 4719-4731, 2020 May 01.
Article En | MEDLINE | ID: mdl-32412562

This study evaluated the in vitro inhibitory influence of particle size of nanocrystalline cellulose (NCC) fractions against α-amylase and α-glucosidase using cooked potato starch-protein food model system. The kinetics of the resulting inhibitions in the presence of NCC of the two tested enzymes were examined and characterised. Both the size and dose of NCC significantly (p < 0.05) inhibited α-amylase and α-glucosidase by modulating the rate of hydrolysis of starch in the food model system lower than that of the control (no added fibre). At equal concentrations of each NCC fraction, the smallest particle size (≤125 nm) exhibited the highest potency as an inhibitor (median inhibitory concentration (IC50) = 2.98 mg mL-1 and 4.57 mg mL-1 for α-amylase and α-glucosidase, respectively). Increasing concentrations of each NCC fraction caused an apparent significant decrease in Vmax values (p < 0.05) with insignificant change in the Km values for both the tested enzymes. Furthermore, binding assays demonstrated that NCC particles may bind to the two tested enzymes in a non-specific manner. Analysis of the kinetics of the enzymes suggested that the mechanism of inhibition showed that the two tested enzymes mainly exhibited non-competitive mode of inhibition. The observed inhibition of the two tested enzymes suggests that reducing the cellulose size ≤125 nm may enhance its inhibition potency and potentially attenuate starch hydrolysis when added to diet.


Cellulose/pharmacokinetics , Starch/metabolism , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Cellulose/chemistry , Digestion , Dose-Response Relationship, Drug , Humans , Kinetics , Nanoparticles
17.
Food Res Int ; 131: 108935, 2020 05.
Article En | MEDLINE | ID: mdl-32247486

Cellulose is generally recognised as dietary fibre with no limit of permissible quantity in food, and its consumption may modulate digesta content and impact positively on the gastrointestinal physiology and gut microflora. However, cellulose in its native form possessed inherent undesirable physical properties, making it unattractive for food applications. Here, we postulate that by changing cellulose size to nanometric scale, its prebiotic effect would be altered and fermented differently in contrast with micro size cellulose by the gut microbiome and promote the yield of metabolites such as short chain fatty acids (SCFAs). Using faecal matter from three healthy human donors as microbial source, in vitro fermentation of variable size fractions of cellulose from the same were fermented under anaerobic conditions, and SCFAs as well Bifidobacterium selectively isolated and analysed. The increase in production of acetate (194%), butyrate (224%) and propionate (211%) after 24 h of fermentation was significantly promoted by the size reduction and revealed size-dependent relationship as exemplified R2 values >0.83. Consequently, gavaging rats with nanometric size cellulose (125 nm) significantly (p < 0.05) increased these SCFAs yields as well Bifidobacterium counts in contrast with both control and the micro scale size cellulose. Therefore, engineered nanocellulose might have beneficial physiological impact on the gut with improved prebiotic effect.


Biopolymers/pharmacology , Cellulose/pharmacology , Prebiotics , Animals , Bifidobacterium/metabolism , Biopolymers/chemistry , Cellulose/chemistry , Fatty Acids, Volatile/chemistry , Feces/chemistry , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract , Humans , Hydrogen-Ion Concentration , Male , Microscopy, Electrochemical, Scanning , Nanoparticles , Rats , Rats, Wistar
18.
Carbohydr Polym ; 212: 150-159, 2019 May 15.
Article En | MEDLINE | ID: mdl-30832842

A higher temperature is usually used to increase the evaporation rate and thus reduce the drying time of chitosan films during casting preparation process. The effects of drying temperature (45-85 °C) on the microstructure, mechanical and barrier properties of chitosan films were investigated. Chitosan films dried at higher temperatures showed smoother internal microstructures by forming smaller micro-region aggregations and lower ordered crystalline structures. Higher drying temperature also decreased the intermolecular interactions of chitosan chains according to Fourier transform infrared spectroscopy analysis. These together led to the decrease in tensile strength, and the increase in water vapor and oxygen permeability. The film surface hydrophobicity remained unchanged at different drying temperatures, suggesting the applicability for chilled meat preservation. Chilled meat packaged with chitosan films had appropriate drip loss rate values as compared to those of the low-density polyethylene film and the blank sample, with lower thiobarbituric acid reactive substances, aerobic plate count, pH, and total volatile basic nitrogen values during 10 d storage. Moreover, films dried at lower temperatures showed superior juice retention capacity as well as superior preservation effect on chilled meat. The results found in this study can be used to better guide the selecting of drying temperature for chitosan film preparation.

19.
Crit Rev Food Sci Nutr ; 59(17): 2863-2878, 2019.
Article En | MEDLINE | ID: mdl-28933562

In recent years, there is a rising interest in the number of food products containing probiotic bacteria with favorable health benefit effects. However, the viability of probiotic bacteria is always questionable when they exposure to the harsh environment during processing, storage, and gastrointestinal digestion. To overcome these problems, microencapsulation of cells is currently receiving considerable attention and has obtained valuable effects. According to the drying temperature, the commonly used technologies can be divided into two patterns: high temperature drying (spray drying and fluid bed drying) and low temperature drying (ultrasonic vacuum spray drying, spray chilling, electrospinning, supercritical technique, freeze drying, extrusion, emulsion, enzyme gelation, and impinging aerosol technique). Furthermore, not only should the probiotic bacteria maintain high viability during processing but they also need to keep alive during storage and gastrointestinal digestion, where they additionally suffer from water, oxygen, heat as well as strong acid and bile conditions. This review focuses on demonstrating the effects of different microencapsulation techniques on the survival of bacteria during processing as well as protective approaches and mechanisms to the encapsulated probiotic bacteria during storage and gastrointestinal digestion that currently reported in the literature.


Desiccation , Digestion , Microbial Viability , Probiotics , Bacteria , Freeze Drying
20.
Carbohydr Polym ; 200: 436-445, 2018 Nov 15.
Article En | MEDLINE | ID: mdl-30177185

Intake of dietary fibre may modulate digesta viscosity and suppress the rise of postprandial plasma glucose by attenuating glucose diffusion in the lumen of the gastrointestinal tract. In this study, nanocrystalline cellulose (NCC), extracted by sulfuric acid was morphologically characterised by atomic force microscopy. To investigate the influence of digestive processes on NCC viscosity, NCC-protein-starch systems, and NCC suspensions were subjected to two-step static in vitro digestions using Infodigest protocol. Changes in viscosity and subsequent release and diffusion of glucose were monitored. The results demonstrated that the crystalline rod-like NCC particles were sensitive to dilution and constituents in the simulated digestive fluids, and could modulate viscosity of the digesta. Consequently, glucose release and diffusion rates were significantly (p < 0.05) reduced in NCC-food system compared with control. NCC may be used as a dietary fibre in food systems to modulate viscosity and delay the digestion and diffusion of starch and glucose respectively.


Biomimetics , Cellulose/chemistry , Digestion , Glucose/chemistry , Nanoparticles/chemistry , Animals , Cellulose/metabolism , Diffusion , Particle Size
...