Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 855
Filter
1.
R Soc Open Sci ; 11(6): 231979, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39092147

ABSTRACT

Macrocyclic polyamines constitute a significant class of macrocyclic compounds that play a pivotal role in the realm of supramolecular chemistry. They find extensive applications across diverse domains including industrial and agricultural production, clinical diagnostics, environmental protection and other multidisciplinary fields. Macrocyclic polyamines possess a distinctive cavity structure with varying sizes, depths, electron-richness degrees and flexibilities. This unique feature enables them to form specific supramolecular structures through complexation with diverse objects, thereby attracting considerable attention from chemists, biologists and materials scientists alike. However, there is currently a lack of comprehensive summaries on the synthesis methods for macrocyclic polyamines. In this review article, we provide an in-depth introduction to the synthesis of macrocyclic polyamines while analysing their respective advantages and disadvantages. Furthermore, we also present an overview of the recent 5-year advancements in using macrocyclic polyamines as non-viral gene vectors, fluorescent probes, diagnostic and therapeutic reagents as well as catalysts. Looking ahead to future research directions on the synthesis and application of macrocyclic polyamines across various fields will hopefully inspire new ideas for their synthesis and use.

2.
Biol Trace Elem Res ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141196

ABSTRACT

Mammalian cytosolic selenoprotein thioredoxin reductase (TXNRD1) is crucial for maintaining the reduced state of cellular thioredoxin 1 (TXN1) and is commonly up-regulated in cancer cells. TXNRD1 has been identified as an effective target in cancer chemotherapy. Discovering novel TXNRD1 inhibitors and elucidating the cellular effects of TXNRD1 inhibition are valuable for developing targeted therapies based on redox regulation strategies. In this study, we demonstrated that butein, a plant-derived small molecule flavonoid, is a novel TXNRD1 inhibitor. We found that butein irreversibly inhibited recombinant TXNRD1 activity in a time-dependent manner. Using TXNRD1 mutant variants and LC-MS, we identified that butein modifies the catalytic cysteine (Cys) residues of TXNRD1. In cellular contexts, butein promoted the accumulation of reactive oxygen species (ROS) and exhibited cytotoxic effects in HeLa cells. Notably, we found that pharmacological inhibition of TXNRD1 by butein overcame the cisplatin resistance of A549 cisplatin-resistant cells, accompanied by increased cellular ROS levels and enhanced expression of p53. Taken together, the results of this study demonstrate that butein is an effective small molecule inhibitor of TXNRD1, highlighting the therapeutic potential of inhibiting TXNRD1 in platinum-resistant cancer cells.

3.
Psychogeriatrics ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164004

ABSTRACT

BACKGROUND: Using cohort analysis to examine the effects of sleep quality on loneliness among older adults from the life course perspective. METHODS: The hierarchical age-period-cohort growth curve model was used to analyze the data from the 2005-2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS). RESULTS: (1) Loneliness has a 'U' curve relationship with age, but with the rate of increase gradually slowing down. (2) There were significant differences in loneliness across birth cohorts, with younger cohorts having higher predicted loneliness than older cohorts at the same age. (3) The influence of different sleep quality on loneliness showed a trend of increasing with age. (4) There were no significant differences in the impact of sleep quality on loneliness in different cohorts. CONCLUSIONS: This study has identified heterogeneity in loneliness, emphasising the need for a diversified intervention approach. Sleep quality has a protective effect on loneliness and is easy to assess, making it an important intervention tool. In addition, it is imperative to account for the influences of age and cohort effects when formulating intervention strategies.

4.
Heliyon ; 10(15): e34987, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39144974

ABSTRACT

Epilepsy is a chronic neurological disorder. Drug-resistant epilepsy (DRE) accounts for about one-third of epilepsy patients worldwide. Peimine, a main active component of Fritillaria, has been reported to show anti-inflammatory effects. However, its potential therapeutic role in DRE is not yet fully understood. In this work, a DRE rat model was established by injecting 1 µg kainic acid (KA), followed by a 250 mg/kg administration of valproic acid (VPA) from day 4-31. Rats were treated with different doses of peimine (2.5 mg/kg, 5 mg/kg and 10 mg/kg) daily from day 32-62. In vitro, BV-2 microglia were exposed to different doses of peimine (7.5 µg/ml, 15 µg/ml, and 30 µg/ml) in presence of LPS. The aim of this study was to investigate the potential therapeutic effects of peimine on DRE. The results showed that peimine efficiently suppressed the KA-induced epileptic behaviors of rats in a dose-dependent manner, as recorded by electroencephalography. Furthermore, peimine ameliorated hippocampal neuron injury in DRE rats, and promoted an M1-to-M2 microglial phenotype shift in a dose-dependent manner. Mechanistically, peimine inhibited the TLR4/NF-κB/HIF-1α signaling pathway both in vivo and in vitro. Additionally, peimine suppressed the apoptosis of primary neurons induced by LPS-treated microglia. In conclusion, peimine augments the microglial polarization towards an M2 phenotype by inhibiting the TLR4/NF-κB/HIF-1α signaling pathway, thereby attenuating DRE.

5.
Front Endocrinol (Lausanne) ; 15: 1414908, 2024.
Article in English | MEDLINE | ID: mdl-38989000

ABSTRACT

Background: Lipodystrophy is a rare disease that is poorly diagnosed due to its low prevalence and frequent phenotypic heterogeneity. The main therapeutic measures for patients with clinical lipodystrophy are aimed at improving general metabolic complications such as diabetes mellitus, insulin resistance, and hypertriglyceridemia. Therefore, there is an urgent need to find new biomarkers to aid in the diagnosis and targeted treatment of patients with congenital generalized lipodystrophy (CGL). Methods: Dataset GSE159337 was obtained via the Gene Expression Omnibus database. First, differentially expressed genes (DEGs) between CGL and control samples were yielded via differential expression analysis and were analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment to explore the functional pathways. Next, protein-protein interaction analysis and the MCC algorithm were implemented to yield candidate genes, which were then subjected to receiver operating characteristic (ROC) analysis to identify biomarkers with an area under the curve value exceeding 0.8. Moreover, random forest (RF), logistic regression, and support vector machine (SVM) analyses were carried out to assess the diagnostic ability of biomarkers for CGL. Finally, the small-molecule drugs targeting biomarkers were predicted, and ibuprofen was further validated in lipodystrophy mice. Results: A total of 71 DEGs in GSE159337 were sifted out and were involved in immune receptor activity, immune response-regulating signaling pathway, and secretory granule membrane. Moreover, CXCR2, TNFSF10, NLRC4, CCR2, CEACAM3, TLR10, TNFAIP3, and JUN were considered as biomarkers by performing ROC analysis on 10 candidate genes. Meanwhile, RF, logistic regression, and SVM analyses further described that those biomarkers had an excellent diagnosis capability for CGL. Eventually, the drug-gene network included ibuprofen-CXCR1, ibuprofen-CXCR1, cenicriviroc-CCR2, fenofibrate-JUN, and other relationship pairs. Ibuprofen treatment was also validated to downregulate CXCR1 and CXCR2 in peripheral blood mononuclear cells (PBMCs) and improve glucose tolerance, hypertriglyceridemia, hepatic steatosis, and liver inflammation in lipodystrophy mice. Conclusion: Eight biomarkers, namely, CXCR2, TNFSF10, NLRC4, CCR2, CEACAM3, TLR10, TNFAIP3, and JUN, were identified through bioinformatic analyses, and ibuprofen targeting CXCR1 and CXCR2 in PBMCs was shown to improve metabolic disturbance in lipodystrophy, contributing to studies related to the diagnosis and treatment of lipodystrophy.


Subject(s)
Computational Biology , Animals , Mice , Computational Biology/methods , Humans , Lipodystrophy/genetics , Lipodystrophy/drug therapy , Lipodystrophy/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Male , Protein Interaction Maps , Gene Expression Profiling , Mice, Inbred C57BL
6.
Work ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38995753

ABSTRACT

BACKGROUND: Research on muscle activity to reduce injuries during firefighting training has getting increasing attention. OBJECTIVE: The purpose of this study was to assess the activity changes in nine muscles of firefighters during the seven firefighting training programs, and to analyze the influence of different firefighting training programs on muscle activity. METHODS: Ten healthy male firefighters were recruited to measure the field surface electromyographic activities (including the percentage of Maximum Voluntary Contraction electromyography (% MVC) and the integrated electromyography value (iEMG)) during all the firefighting training programs. RESULTS: The results showed that the electromyographic activity of gastrocnemius (GA) was stronger in climbing the hooked ladder and climbing the six-meter long ladder training programs. Arms, shoulders, and lower limb muscles were more activated, myoelectric activities were more intense, and fatigue in these areas was more likely to occur during climbing five-story building with loads. Compared with other muscles, erector spine (ES) had a higher degree of activation during different postures of water shooting. The Borg scale scores of shoulders, trunk, thighs and calves were also higher. CONCLUSION: After completing all training programs, GA, tibialis anterior (TA), trapezius (TR), and ES were strongly activated, and all muscles had obvious force. The % MVC and iEMG analyses correspond well with the Borg Scale score. The results can provide certain reference for reducing the musculoskeletal injury of firefighters, carrying out scientific training and formulating effective injury prevention measures for them.

7.
Colloids Surf B Biointerfaces ; 242: 114086, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39038410

ABSTRACT

Infections caused by multidrug-resistant (MDR) bacteria are increasing and becoming an urgent global health crisis. The discovery and development of novel antibacterial agents to combat MDR are highly desirable. Here, we report the fabrication of cerium-doped carbon dots (CeCDs) with a simple hydrothermal method, which exhibit intrinsic broad efficacy against MDR bacteria including clinical isolates while maintaining low cytotoxicity and hemolytic effects. Importantly, the antibacterial activity of CeCDs is dramatically improved owing to the generation of reactive oxygen species (ROS) upon white light irradiation. Comprehensive analyses revealed that the CeCDs can penetrate the bacterial wall, disrupt the cell membrane, and prevent the biofilm formation, possibly hindering the bacterial resistance development. And the interaction of CeCDs with lipopolysaccharide (LPS) may contribute to the higher activity against Gram-negative bacteria strains. The treatment of CeCDs in a murine skin infection model can significantly reduce the number of bacteria on infected sites and accelerate wound healing by irradiation with light. Overall, CeCDs show great promise as low-cost and efficient antibacterial agents for chronic wounds and may be served as a powerful weapon to fight against the growing threat of MDR bacterial infection.

8.
Article in English, Chinese | MEDLINE | ID: mdl-39034149

ABSTRACT

OBJECTIVES: To investigate the incidence and influencing factors of allergic reactions to cephalosporins. METHODS: A cross-sectional study of 29 medical institutions in Zhejiang Province was conducted from April 2021 to June 2021. The incidence of allergic reactions to cephalosporins was investigated. The influencing factors of cephalosporin-induced allergic reactions were analyzed by Poisson regression. RESULTS: A total of 56 155 patients were included in this study. The total incidence of allergic reactions to cephalosporin was 1.67 ‰, the highest incidences of anaphylaxis occurred in ceftizoxime (4.27‰), followed by ceftriaxone (3.49‰) and cefotaxime (2.40‰). There was no significant difference in the incidence of allergic reactions between patients with negative skin tests and those without skin tests (1.75‰ vs. 1.63‰, RR=1.07, 95%CI:0.70-1.63, P> 0.05). Poisson regression showed that body mass index (BMI) <18.5 kg/cm2 (RR=2.43, 95%CI: 1.23-4.82, P<0.01) and history of ß-lactam antibiotics allergy (RR=33.88, 95%CI: 1.47-781.12, P<0.05) increased cephalosporin-induced anaphylaxis. Compared with cefuroxime, the risk of allergic reactions was increased for ceftriaxone (RR=3.08, 95%CI: 1.70-5.59, P<0.01), ceftazidime (RR=1.89, 95%CI: 1.03-3.47, P<0.05), and ceftriaxone (RR=3.74, 95%CI: 1.64-8.50, P<0.01). CONCLUSIONS: Lower BMI and history of ß-lactam antibiotics allergy increase the risk of cephalosporin allergic reactions, and the routine skin test may not reduce the occurrence of allergic reactions to cephalosporins.

9.
Transl Oncol ; 47: 102052, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981246

ABSTRACT

Inducing immunogenic cell death (ICD) process may be an important antitumor strategy in ovarian cancer (OC). Metformin (Met) has been shown to have antitumor effects in OC, but whether it mediates the ICD to inhibit OC process is unclear. Human OC cell lines (SKOV3 and A2780) were treated with Met. Dendritic cell (DC) and CD8+T cells were isolated from the peripheral blood mononuclear cells of volunteers. Cell counting kit 8 assay was used to measure cell viability, and immunofluorescence staining was performed to detect the percentages of membrane and intracellular calreticulin (CRT). CRT level, DC maturation and effector cell activation were evaluated by flow cytometry. The levels of IL-10 and IFN-γ, as well as the releasements of HMGB1 and ATP, were detected using corresponding kits. The protein levels of heat shock protein 70/90 (HSP70/90) and AMPKα were tested by western blot analysis, and the mRNA levels of CD80, CD86, IL-10, and IFN-γ were measured by quantitative real-time PCR. Colony formation assay was utilized for assessing cell cytotoxicity. Mice transplanted tumor model was constructed to assess the effect of Met on OC tumor growth, and immunohistochemistry staining was used to analyze CD80+ and CD86+ cells in mice tumor tissues. Our data showed that Met inhibited OC cell viability and induced CRT exposure. Besides, Met could promote the release of HMGB1 and ATP, as well as induce DC maturation. In vivo experiments suggested that Met restrained OC tumor growth via activating antitumor immune response. Moreover, Met activated AMPK pathway, and silenced AMPK pathway reversed the promoting effect of Met on CRT exposure and the releasements of HMGB1 and ATP in OC cells. In conclusion, Met induced ICD-mediated immune destruction in OC via activating AMPK pathway, indicating that Met might be used in the immunotherapy of OC.

10.
J Clin Anesth ; 97: 111520, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38954871

ABSTRACT

STUDY OBJECTIVE: To assess the association of intraoperative hypotension with long-term survivals in older patients after major noncardiac surgery mainly for cancer. DESIGN: A secondary analysis of databases from three randomized trials with long-term follow-up. SETTING: The underlying trials were conducted in 17 tertiary hospitals in China. PATIENTS: Patients aged 60 to 90 years who underwent major noncardiac thoracic or abdominal surgeries (≥ 2 h) in a single center were included in this analysis. EXPOSURES: Restricted cubic spline models were employed to determine the lowest mean arterial pressure (MAP) threshold that was potentially harmful for long-term survivals. Patients were arbitrarily divided into three groups according to the cumulative duration or area under the MAP threshold. The association between intraoperative hypotension exposure and long-term survivals were analyzed with the Cox proportional hazard regression models. MEASUREMENTS: Our primary endpoint was overall survival. Secondary endpoints included recurrence-free and event-free survivals. MAIN RESULTS: A total of 2664 patients (mean age 69.0 years, 34.9% female sex, 92.5% cancer surgery) were included in the final analysis. MAP < 60 mmHg was adopted as the threshold of intraoperative hypotension. Patients were divided into three groups according to duration under MAP < 60 mmHg (<1 min, 1-10 min, and > 10 min) or area under MAP <60 mmHg (< 1 mmHg⋅min, 1-30 mmHg⋅min, and > 30 mmHg⋅min). After adjusting confounders, duration under MAP < 60 mmHg for > 10 min was associated with a shortened overall survival when compared with the < 1 min patients (adjusted hazard ratio [HR] 1.31, 95% confidence interval [CI] 1.09 to 1.57, P = 0.004); area under MAP < 60 mmHg for > 30 mmHg⋅min was associated with a shortened overall survival when compared with the < 1 mmHg⋅min patients (adjusted HR 1.40, 95% CI 1.16 to 1.68, P < 0.001). Similar associations exist between duration under MAP < 60 mmHg for > 10 min or area under MAP < 60 mmHg for > 30 mmHg⋅min and recurrence-free or event-free survivals. CONCLUSIONS: In older patients who underwent major noncardiac surgery mainly for cancer, intraoperative hypotension was associated with worse overall, recurrence-free, and event-free survivals.

11.
Microbiol Spectr ; 12(8): e0334023, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38980024

ABSTRACT

Vibrio vulnificus (Vv) is known to cause life-threatening infections, particularly septicemia. These patients often exhibit elevated levels of pro-inflammatory cytokines. While it is established that mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) contributes to the production of pro-inflammatory cytokines, the role of MNK in macrophages during Vv infection remains unclear. In this study, we investigate the impact of MNK on macrophages. We demonstrate that the inhibition of MNK in J774A.1 cells, when treated with lipopolysaccharide or Vv, resulted in decreased production of tumor necrosis factor alpha and interleukin-6, without affecting their transcription. Interestingly, treatment with MNK inhibitor CGP57380 led to enhanced phosphorylation of MNK1 but decreased phosphorylation of eIF4E. Moreover, MNK1 knockout cells exhibited an increased capacity for phagocytosis and clearance of Vv, with more acidic phagosomes than the parental cells. Notably, CGP57380 did not impact phagocytosis, bacterial clearance, or phagosome acidification in Vv-infected J774A.1 cells. Considering the reported association between MNK and mammalian target of rapamycin complex 1 (mTORC1) activation, we investigated the mTORC1 signaling in MNK1 knockout cells infected with Vv. Our results revealed that attenuation of the mTORC1 signaling in these cells and treatment with the mTORC1 inhibitor rapamycin significantly enhanced bacterial clearance in J774A.1 cells following Vv infection. In summary, our findings suggest that MNK promotes the Vv-induced cytokine production in J774A.1 cells without affecting their transcription levels. MNK1 appears to impair the phagocytosis, bacterial clearance, and phagosome acidification in Vv-infected J774A.1 cells through the MNK1-mTORC1 signaling pathway rather than the MNK1-eIF4E signaling pathway. Our findings highlight the importance of the MNK1-mTORC1 pathway in modulating macrophage responses to Vv infection. IMPORTANCE: Mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) plays a role in promoting the production of tumor necrosis factor alpha and interleukin-6 in macrophages during Vibrio vulnificus (Vv) infection. Inhibition or knockout of MNK1 in J774A.1 cells resulted in reduced cytokine production without affecting their transcription levels. MNK1 also impairs phagocytosis, bacterial clearance, and phagosome acidification in Vv-infected cells through the MNK1-mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. The findings highlight the importance of the MNK1-mTORC1 pathway in modulating macrophage responses to Vv infection.


Subject(s)
Macrophages , Mechanistic Target of Rapamycin Complex 1 , Phagocytosis , Protein Serine-Threonine Kinases , Vibrio vulnificus , Vibrio vulnificus/metabolism , Vibrio vulnificus/genetics , Macrophages/microbiology , Macrophages/immunology , Macrophages/metabolism , Animals , Mice , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Line , Vibrio Infections/immunology , Vibrio Infections/microbiology , Signal Transduction , Cytokines/metabolism , Tumor Necrosis Factor-alpha/metabolism , Phosphorylation , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Humans , Aniline Compounds , Purines
12.
Entropy (Basel) ; 26(7)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39056963

ABSTRACT

In this paper, we investigate the impact of classical optical communications in quantum key distribution (QKD) over hollow-core fiber (HCF), multi-core fiber (MCF) and single-core fiber (SCF) and propose wavelength allocation schemes to enhance QKD performance. Firstly, we theoretically analyze noise interference in QKD over HCF, MCF and SCF, such as spontaneous Raman scattering (SpRS) and four-wave mixing (FWM). To mitigate these noise types and optimize QKD performance, we propose a joint noise suppression wavelength allocation (JSWA) scheme. FWM noise suppression wavelength allocation and Raman noise suppression wavelength allocation are also proposed for comparison. The JSWA scheme indicates a significant enhancement in extending the simultaneous transmission distance of classical signals and QKD, reaching approximately 100 km in HCF and 165 km in MCF under a classical power per channel of 10 dBm. Therefore, MCF offers a longer secure transmission distance compared with HCF when classical signals and QKD coexist in the C-band. However, when classical signals are in the C-band and QKD operates in the O-band, the performance of QKD in HCF surpasses that in MCF. This research establishes technical foundations for the design and deployment of QKD optical networks.

13.
PLoS One ; 19(7): e0306930, 2024.
Article in English | MEDLINE | ID: mdl-39012854

ABSTRACT

BACKGROUND: Cryptochrome-2 (CRY2) is a core rhythm gene that plays a crucial role in DNA damage repair. The present study investigated the potential role of CRY2 in mediating sleep deprivation-induced cognitive decline in 5xFAD mice. METHODS: To assess the effects of SD on different brain regions of the mouse brain, we used 18F FDG PET-CT. Cognitive function was evaluated using the Morris water maze test and Y-maze. Lentivirus was used for the overexpression of CRY2, and small interfering RNA (siRNA) was used for the downregulation of CRY2 to verify the effect of CRY2. We used qRT‒PCR and Western blotting to identify the downstream factors of CRY2 and evaluated the cognitive function of mice to confirm the effects of these factors. RESULTS: The AD mice exhibited cognitive decline after 21 days of SD and had higher expression of CRY2 compared to AD mice with normal sleep. Overexpression of CRY2 led to decreased cognitive function in AD mice, and the downregulation of CRY2 attenuated the SD-induced cognitive decline in AD mice. CRY2 reduced the expression and function of CISH, which reduced the inhibition of STAT1 phosphorylation and led to synaptic dysfunction. CISH overexpression attenuated the impairing effect of sleep deprivation on cognitive function in AD mice. Furthermore, 18F FDG PET-CT revealed that SD significantly reduced glucose metabolism in different brain regions of AD mice. CONCLUSION: Our study demonstrated that sleep deprivation upregulated CRY2 in the hippocampus of AD mice, which resulted in synaptic dysfunction by decreasing CISH-mediated STAT1 phosphorylation.


Subject(s)
Cognitive Dysfunction , Cryptochromes , Mice, Transgenic , Sleep Deprivation , Animals , Sleep Deprivation/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/etiology , Mice , Cryptochromes/metabolism , Cryptochromes/genetics , Male , Positron Emission Tomography Computed Tomography , Disease Models, Animal , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Maze Learning , Brain/metabolism , Brain/diagnostic imaging
14.
Small Methods ; : e2400439, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864536

ABSTRACT

Optical encryption technologies based on persistent luminescence material have currently drawn increasing attention due to the distinctive and long-lived optical properties, which enable multi-dimensional and dynamic optical information encryption to improve the security level. However, the controlled synthesis of persistent phosphors remains largely unexplored and it is still a great challenge to regulate the structure for optical properties optimization, which inevitably sets significant limitations on the practical application of persistent luminescent materials. Herein, a controlled synthesis method is proposed based on defect structure regulation and a series of porous persistent phosphors is obtained with different luminous intensities, lifetime, and wavelengths. By simply using diverse templates during the sol-gel process, the oxygen vacancy defects structures are successfully regulated to improve the optical properties. Additionally, the obtained series of porous Al2O3 are utilized for multi-color and dynamic optical information encryption to increase the security level. Overall, the proposed defect regulation strategy in this work is expected to provide a general and facile method for optimizing the optical properties of persistent luminescent materials, paving new ways for broadening their applications in multi-dimensional and dynamic information encryption.

15.
Front Public Health ; 12: 1357311, 2024.
Article in English | MEDLINE | ID: mdl-38873306

ABSTRACT

Limited data exist on HPV prevalence and genotyping during the COVID-19 pandemic. A total of 130,243 samples from 129, 652 women and 591 men who visited the First People's Hospital of Linping District between 2016 and 2022 were recruited. HPV genotypes were detected by polymerase chain reaction (PCR) amplification and nucleic acid molecular hybridization. Then the prevalence characteristics of HPV genotypes and trends in HPV infection rates from 2016 to 2022 were analyzed. Results showed that among the study population, the overall prevalence of HPV infection was 15.29%, with 11.25% having single HPV infections and 4.04% having multiple HPV infections, consistent with previous findings. HPV genotypes exhibited similar distribution patterns in both male and female groups, with HPV16, HPV52, HPV58, HPV18, and HPV39 being the most prevalent. Age-related analysis unveiled a bimodal pattern in HPV prevalence, with peaks in infection rates observed in individuals below 20 and those aged 61-65 years. Comparing the pre- and during COVID-19 periods revealed significant disparities in HPV infections, with variations in specific HPV genotypes, including 16, 18, 35, 45, 52, 58, 59, and 68. This study provides valuable insights into the prevalence, distribution, and epidemiological characteristics of HPV infections in a large population. It also highlights the potential impact of the COVID-19 pandemic on HPV trends.


Subject(s)
COVID-19 , Genotype , Papillomaviridae , Papillomavirus Infections , Humans , COVID-19/epidemiology , COVID-19/virology , Papillomavirus Infections/epidemiology , Papillomavirus Infections/virology , Female , China/epidemiology , Male , Prevalence , Middle Aged , Adult , Aged , Papillomaviridae/genetics , Papillomaviridae/isolation & purification , Young Adult , SARS-CoV-2/genetics , Adolescent , Pandemics/statistics & numerical data
16.
EJNMMI Res ; 14(1): 57, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888802

ABSTRACT

BACKGROUND: Paraquat (PQ) -induced pulmonary fibrosis poses a significant medical challenge due to limited treatment options and high mortality rates. Consequently, there is an urgent need for early diagnosis and accurate staging to facilitate appropriate treatment strategies. In this study, we assessed the diagnostic potential of [18F]F-FAPI-42 PET/CT imaging for early detection and disease staging in a rat model of PQ-induced lung fibrosis. METHODS: After administering 80 mg/kg of PQ orally to Sprague-Dawley rats, we intravenously injected 3-3.5 MBq of [18F]F-FAPI-42 on day 7, 14, and 21 post-dosing. Dynamic PET/CT imaging was carried out for one hour immediately after the administration of [18F]F-FAPI-42. Subsequently, the lung tissues were collected for Hematoxylin and Eosin (HE) staining, Masson's trichrome staining, and NOTA-FAPI-04-MB fluorescent probe staining. Data analysis was performed using the Imalytics preclinical software, and the mean standardized uptake value (SUVmean) was calculated. RESULTS: PET signals revealed that in areas with evident lesions on CT, the SUVmean on day 14 was significantly higher than on day 7 and 21, indicating that changes in fibrosis activity levels contribute to the staging of pulmonary fibrosis. Additionally, the NOTA-FAPI-04-MB fluorescent probe staining also demonstrated the most pronounced probe uptake on day 14. In regions without apparent lesions on CT, the SUVmean gradually increased from day 7 to day 21, reflecting ongoing fibrotic activity. Moreover, HE staining and Masson's trichrome staining did not reveal pulmonary fibrosis, while PET imaging was able to detect it, serving the purpose of early diagnosis. At 30 min and 60 min, the target-to-background ratio (TBR) of the PQ groups on day 7, 14, and 21 was significantly higher than the control group, suggesting a high specificity of [18F]F-FAPI-42 binding to activated fibroblasts. CONCLUSION: [18F]F-FAPI-42 PET/CT imaging enables early diagnosis and staging of PQ-induced pulmonary fibrosis, demonstrating its feasibility and potential for characterizing early disease stages.

17.
Toxicol Res (Camb) ; 13(2): tfae082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38841432

ABSTRACT

Introduction: Cadmium (Cd) has been shown to disrupt the reproductive system. In this study, we evaluated the protective effects of Curcumin (Cur) against Cd-induced reproductive toxicity. Methods: Exploring the role of Cur in Cd-treated rat models. Results: The study demonstrated that Cd treatment impaired the seminiferous epithelium, leading to increased apoptosis of germ cells. Interestingly, pretreatment with Cur ameliorated the histological damage and decreased the germ cell apoptosis induced by Cd. Furthermore, after Cd exposure, B-cell lymphoma-2 expression was significantly decreased while Bax expression was increased. Pretreatment of rats with Cur protected against germ cell apoptosis by improving the expression of B-cell lymphoma-2 and reducing Bax. Additionally, Cd treatment increased reactive oxygen species, resulting in a decrease in antioxidant enzymes. However, pretreatment of rats with Cur followed by Cd administration led to a substantial decrease in reactive oxygen species levels and increased activities of antioxidant enzymes. Ultrastructural investigations revealed that damage to the mitochondrial structure was significantly ameliorated by Cur pretreatment in Cd-treated rats. Notably, Cur significantly activated the peroxisome proliferator-activated receptor gamma coactivator 1a/Sirtuins-3 signaling pathway. Conclusions: Overall, our data suggest that Cd induces germ cell apoptosis through mitochondrial-induced oxidative stress, but Cur pretreatment offers strong protection against Cd-induced reproductive toxicity.

18.
Neurol Genet ; 10(3): e200162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841628

ABSTRACT

Background and Objectives: Spinocerebellar ataxia type 3 (SCA3) is a hereditary ataxia that occurs worldwide. Clinical patterns were observed, including the one characterized by marked spastic paraplegia. This study investigated the clinical features, disease progression, and multiparametric imaging aspects of patients with SCA3. Methods: We retrospectively analyzed 249 patients with SCA3 recruited from the Organization for Southeast China for cerebellar ataxia research between October 2014 and December 2020. Of the 249 patients, 145 were selected and assigned to 2 groups based on neurologic examination: SCA3 patients with spastic paraplegia (SCA3-SP) and SCA3 patients with nonspastic paraplegia (SCA3-NSP). Participants underwent 3.0-T brain MRI examinations, and voxel-wise and volume-of-interest-based approaches were used for the resulting images. A tract-based spatial statistical approach was used to investigate the white matter (WM) alterations using diffusion tensor imaging, neurite orientation dispersion, and density imaging metrics. Multiple linear regression analyses were performed to compare the clinical and imaging parameters between the 2 groups. The longitudinal data were evaluated using a linear mixed-effects model. Results: Forty-three patients with SCA3-SP (mean age, 37.58years ± 11.72 [SD]; 18 women) and 102 patients with SCA3-NSP (mean age, 47.42years ± 12.50 [SD]; 39 women) were analyzed. Patients with SCA3-SP were younger and had a lower onset age but a larger cytosine-adenine-guanine repeat number, as well as higher clinical severity scores (all corrected p < 0.05). The estimated progression rates of the Scale for the Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale scores were higher in the SCA3-SP subgroup than in the SCA3-NSP subgroup (SARA, 2.136 vs 1.218 points; ICARS, 5.576 vs 3.480 points; both p < 0.001). In addition, patients with SCA3-SP showed gray matter volume loss in the precentral gyrus with a decreased neurite density index in the WM of the corticospinal tract and cerebellar peduncles compared with patients with SCA3-NSP. Discussion: SCA3-SP differs from SCA3-NSP in clinical features, multiparametric brain imaging findings, and longitudinal follow-up progression.

19.
J Exp Bot ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829390

ABSTRACT

The interactions of insect vector-virus-plant have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite, cotton leaf curl Multan betasatellite (CLCuMuB) enhance the performance of B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in the wild type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of the tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.

20.
Emerg Microbes Infect ; 13(1): 2341144, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847579

ABSTRACT

The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.


Subject(s)
Immunity, Innate , SARS-CoV-2 , Humans , SARS-CoV-2/immunology , Host-Pathogen Interactions/immunology , Virus Diseases/immunology , Virus Diseases/virology , COVID-19/immunology , COVID-19/virology , Animals , Communicable Diseases, Emerging/virology , Communicable Diseases, Emerging/immunology
SELECTION OF CITATIONS
SEARCH DETAIL